

Why study thermal CFTs?

Hidde Stoffels

January 27, 2026

1 What is a thermal CFT?

- An alternative way to formulate quantum mechanics is to use density matrices, e.g. $\hat{\rho} = |\Psi\rangle\langle\Psi|$, instead of Hilbert space vectors $|\Psi\rangle$. Then an expectation value is defined as

$$\langle \mathcal{O} \rangle = \langle \Psi | \hat{\mathcal{O}} | \Psi \rangle = \sum_i \langle \psi_i | \left(|\Psi\rangle\langle\Psi| \right) \hat{\mathcal{O}} | \psi_i \rangle = \sum_i \langle \psi_i | \hat{\rho} \hat{\mathcal{O}} | \psi_i \rangle \equiv \text{Tr}(\hat{\rho} \hat{\mathcal{O}}) \quad (1)$$

- This can also accommodate cases where you don't know the exact Hilbert space state of the system: take linear combinations of density matrices. Then the expectation value is as if you're in any particular state with some probability:

$$\langle \mathcal{O} \rangle = \text{Tr}(\hat{\rho} \hat{\mathcal{O}}) = \sum_i \text{Tr}(c_i \hat{\rho}_i \hat{\mathcal{O}}) = \sum_i c_i \langle \Psi_i | \hat{\mathcal{O}} | \Psi_i \rangle \quad (2)$$

- This is ideal for a system at a given temperature, since then the microstate is unknown (too many degrees of freedom, too many fluctuations). Instead, we average over all possible energy states with a Boltzmann factor as weight. For a quantum system at temperature $T = \beta^{-1}$, this means that

$$\hat{\rho} = e^{-\beta \hat{H}} \quad (3)$$

- Then, because always $\hat{\mathcal{O}}(t) = e^{i\hat{H}t} \hat{\mathcal{O}}(0) e^{-i\hat{H}t}$, we get that (with $\Delta t = t_2 - t_1$):

$$\begin{aligned} \langle \mathcal{O}_1(t_1) \mathcal{O}_2(t_2) \rangle_\beta &\equiv \text{Tr} \left(e^{-\beta \hat{H}} e^{i\hat{H}t_1} \hat{\mathcal{O}}_1 e^{-i\hat{H}t_1} e^{i\hat{H}t_2} \hat{\mathcal{O}}_2 e^{-i\hat{H}t_2} \right) \\ &= \text{Tr} \left(\hat{\mathcal{O}}_1 e^{i\hat{H}\Delta t} \hat{\mathcal{O}}_2 e^{-i\hat{H}(\Delta t - i\beta)} \right) \\ &= \text{Tr} \left(\hat{\mathcal{O}}_2 e^{-i\hat{H}(\Delta t - i\beta)} \hat{\mathcal{O}}_1 e^{i\hat{H}(\Delta t - i\beta)} e^{-\beta \hat{H}} \right) \\ &= \langle \mathcal{O}_2(t_2 - i\beta) \mathcal{O}_1(t_1) \rangle_\beta = \langle \mathcal{O}_2(t_2) \mathcal{O}_1(t_1 + i\beta) \rangle_\beta \end{aligned} \quad (4)$$

- In other words, if we Wick rotate to $\tau = it$ and assume that $\tau_1 > \tau_2$ to ensure convergence, the Euclidean two-point function $g(\tau_1, \tau_2) = g(\tau)$ with $\tau = \tau_1 - \tau_2$ should obey

$$g(\tau) = g(\tau + \beta) \quad (5)$$

- This is known as the *Kubo-Martin-Schwinger* (KMS) condition. Axiomatically, it defines what we mean by a thermal state; a thermal CFT is simply a CFT in a thermal state.
- In the Euclidean case, you can interpret the KMS condition as a compactification in one direction: \mathbb{R}^d becomes $S^1 \times \mathbb{R}^{d-1}$.
- For CFTs, we are used to working in Euclidean signature; additionally, we often compactify the spatial directions as well (to combat IR divergences). Thus, thermal CFTs are equivalent to CFTs on a compact manifold $S^1 \times S^{d-1}$. The radius of S^{d-1} is often fixed.

2 Why study thermal CFTs? Holography

- A theoretically very important reason to study thermal CFTs is because some of them are holographic, in which case they correspond to black holes in AdS_{d+1} .
- How do we see this? First, intuitively: a thermal state has many particles (to do proper statistics), so a thermal CFT corresponds to many particles in the AdS_{d+1} bulk. Because of the potential, they gather around the origin and collapse into a black hole.
- Secondly, we argue more rigorously the other way around. Start with AdS_{d+1} -Schwarzschild spacetime, and ask what it is dual to.
- The (Euclidean) metric is

$$ds^2 = V d\tau^2 + \frac{dr^2}{V} + r^2 d\Omega_{d-1} \quad (6)$$

with the following blackening function:

$$V = 1 + \frac{r^2}{L^2} - \frac{\omega_d M}{r^{d-2}} \quad (7)$$

where ω_d is a dimensionful constant that depends on d (through e.g. Newton's constant).

- A horizon occurs when $V = 0$; the event horizon is at r_+ , the largest r for which this happens, and forms the edge of spacetime in Euclidean signature (afterwards, the metric signature is indeterminate).
- If $\delta r = r - r_+ > 0$ is small (i.e. $\delta r \ll r_+$), then the metric becomes

$$\begin{aligned} ds^2 &= V'(r_+) \delta r d\tau^2 + \frac{d\delta r^2}{V'(r_+) \delta r} + (\delta r + r_+)^2 d\Omega_{d-1} \\ &= \frac{[V'(r_+)]^2}{4} x^2 d\tau^2 + dx^2 + \left(\frac{1}{4} V'(r_+) x^2 + r_+ \right)^2 d\Omega_{d-1} \end{aligned} \quad (8)$$

with $x = 2\sqrt{\delta r/V'(r_+)}$.

- The τ, x -plane should become Euclidean space for such small distances (since space is locally flat); this is only possible if $\theta \equiv \frac{1}{2} V'(r_+) \tau \in [0, 2\pi]$. Thus, the periodicity of τ has to be $\beta = \frac{4\pi}{V'(r_+)}$.
- The Euclidean metric at any fixed r (including $r \rightarrow \infty$) is therefore precisely $S^1 \times S^{d-1}$. At the boundary, we must have a thermal CFT! Its temperature is the radius of the S^1 , which in this case is

$$\beta = \frac{4\pi}{V'(r_+)} = \frac{4\pi r_+ L^2}{r_+^2 d + (d-2)L^2} \leq \frac{2\pi L}{d-1} \quad (9)$$

This immediately tells us that β needs to be low enough (the maximum β occurs at $r_+ = L$), i.e. the temperature needs to be sufficiently high, for the AdS_{d+1} -Schwarzschild spacetime to make sense. Otherwise, a thermal CFT is just dual to regular old AdS_{d+1} , with some hot gas inside.

3 Why study thermal CFTs? Statistical physics

- An important property of statistical physics systems is universality: near a critical point, the correlation length diverges (by definition) and hence the system is described by a CFT. Which CFT that is, depends solely on the symmetry group because it determines where the RG flow will be directed to.
- Consider for example the Ising model, in d dimensions, with Hamiltonian

$$H = -J \sum_{\langle i,j \rangle} \sigma_i \sigma_j - h \sum_j \sigma_j \quad (10)$$

- For $h = 0$, you see that it has a \mathbb{Z}_2 symmetry. In general, we could assign a vector to each lattice site and enhance the \mathbb{Z}_2 symmetry to an $O(N)$ symmetry.
- This can be studied using the $O(N)$ field theory, defined with

$$S = - \int d^d x \left(\frac{1}{2} (\partial \phi_i)^2 + \frac{\lambda}{4!} (\phi_i \phi_i)^2 \right) \quad (11)$$

where a sum over the index i is implicit.

- The four-point interaction has $[\lambda] = 4 - d$, and therefore it is relevant for $d < 4$; in these cases you get an IR fixed point, and the model is in the same universality class as the ($h = 0$) Ising model.
- Close to $d = 4$ (i.e. $d = 4 - \epsilon$) you can study this fixed point perturbatively in ϵ ; far away ($d = 2$ or $d = 3$) you need something else.
- A good starting point is to do a Hubbard-Stratonovich transformation, wherein you replace the action by

$$S = - \int d^d x \left(\frac{1}{2} (\partial \phi_i)^2 + \frac{1}{2} \sigma \phi_i^2 - \frac{3! \sigma^2}{4 \lambda} \right) \quad (12)$$

- These two actions are equivalent because you can compute the σ integral in the partition function:

$$\begin{aligned} \int \mathcal{D}[\sigma] e^{iS} &= e^{-\frac{i}{2} \int d^d x (\partial \phi_i)^2} \int \mathcal{D}[\sigma] e^{-\int d^d x \left(\frac{3!(\epsilon-i)}{4\lambda} \sigma^2 + \frac{i}{2} \phi_i^2 \sigma \right)} \\ &= e^{-\frac{i}{2} \int d^d x (\partial \phi_i)^2} C e^{-\frac{1}{2} \frac{\phi_i^2}{2} \frac{2\lambda}{3!(\epsilon-i)} \frac{\phi_i^2}{2}} \\ &= C e^{-i \int d^d x \left(\frac{1}{2} (\partial \phi_i)^2 + \frac{\lambda}{4!} (\phi_i \phi_i)^2 \right)} \end{aligned} \quad (13)$$

- Observe that the quadratic σ term has coupling $[\lambda^{-1}] = d - 4 < 0$, so it is IR-irrelevant; the fixed point is located at $\lambda \rightarrow \infty$.
- An important effect at non-zero temperatures is that ϕ_i acquires a mass. You can see this from the partition function, where you can now integrate out the ϕ_i fields. For $\lambda \rightarrow \infty$, the result is

$$Z = \int \mathcal{D}[\sigma] e^{-\frac{N}{2} \text{Tr} \ln(-\partial_\mu \partial^\mu + \sigma)} \quad (14)$$

- This can be computed using a saddle-point approximation if $N \rightarrow \infty$. For a thermal state in $d = 3$, the saddle-point is located where

$$\frac{\partial}{\partial \sigma} \text{Tr} \ln(-\partial_\mu \partial^\mu + \sigma) = \sum_{n \in \mathbb{Z}} \int \frac{d^2 \mathbf{p}}{(2\pi)^2} \frac{1}{\omega_n^2 + \mathbf{p}^2 + \sigma} = 0 \quad (15)$$

where $\omega_n = 2\pi n/\beta$ are the eigenvalues of the Laplace operator on a circle (the compactified time dimension; for now we take the spatial dimensions to be non-compact).

- You can then do the sum, regulate the integral (e.g. by introducing a cutoff) and renormalise it; the result is that at the saddle-point, the expectation value of σ itself is

$$\langle \sigma \rangle_\beta = \frac{4}{\beta} \ln^2 \left(\frac{1 + \sqrt{5}}{2} \right) \equiv m_{\text{th}}^2 \quad (16)$$

- The interpretation as a mass follows from the two-point function:

$$\langle \phi_a \phi_b \rangle_\beta (\omega_n, \mathbf{k}) = - \frac{i \delta_{ab}}{-\omega_n^2 + \mathbf{k}^2 + \langle \sigma \rangle_\beta} \quad (17)$$

4 Further reading

- [Emergent spacetime and holographic CFTs](#);
- [Anti de Sitter space and holography](#) (especially section 3);
- [Introduction to Gauge/Gravity duality](#);
- [Lectures on AdS/CFT from the Bottom Up](#);
- [The Conformal Bootstrap at Finite Temperature](#) (especially section 5.1);
- and [Thermal effects in conformal field theories](#).