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1 What is a thermal CFT?

• An alternative way to formulate quantum mechanics is to use density matrices, e.g. ρ̂ =
|Ψ〉 〈Ψ|, instead of Hilbert space vectors |Ψ〉. Then an expectation value is defined as

〈O〉 = 〈Ψ| Ô |Ψ〉 =
∑

i

〈ψi|
(

|Ψ〉 〈Ψ|
)

Ô |ψi〉 =
∑

i

〈ψi| ρ̂Ô |ψi〉 ≡ Tr(ρ̂Ô) (1)

• This can also accommodate cases where you don’t know the exact Hilbert space state of
the system: take linear combinations of density matrices. Then the expectation value is
as if you’re in any particular state with some probability:

〈O〉 = Tr(ρ̂Ô) =
∑

i

Tr(ciρ̂iÔ) =
∑

i

ci 〈Ψi| Ô |Ψi〉 (2)

• This is ideal for a system at a given temperature, since then the microstate is unknown (too
many degrees of freedom, too many fluctuations). Instead, we average over all possible
energy states with a Boltzman factor as weight. For a quantum system at temperature
T = β−1, this means that

ρ̂ = e−βĤ (3)

• Then, because always Ô(t) = eiĤtÔ(0)e−iĤt, we get that (with ∆t = t2 − t1):

〈O1(t1)O2(t2)〉β ≡ Tr
(

e−βĤeiĤt1Ô1e
−iĤt1eiĤt2Ô2e

−iĤt2

)

= Tr
(

Ô1e
iĤ∆tÔ2e

−iĤ(∆t−iβ)
)

= Tr
(

Ô2e
−iĤ(∆t−iβ)Ô1e

iĤ(∆t−iβ)e−βĤ
)

= 〈O2(t2 − iβ)O1(t1)〉β = 〈O2(t2)O1(t1 + iβ)〉β (4)

• In other words, if we Wick rotate to τ = it and assume that τ1 > τ2 to ensure convergence,
the Euclidean two-point function g(τ1, τ2) = g(τ) with τ = τ1 − τ2 should obey

g(τ) = g(τ + β) (5)

• This is known as the Kubo-Martin-Schwinger (KMS) condition. Axiomatically, it defines
what we mean by a thermal state; a thermal CFT is simply a CFT in a thermal state.

• In the Euclidean case, you can interpret the KMS condition as a compactification in one
direction: R

d becomes S1 × R
d−1.

• For CFTs, we are used to working in Euclidean signature; additionally, we often compact-
ify the spatial directions as well (to combat IR divergences). Thus, thermal CFTs are
equivalent to CFTs on a compact manifold S1 × Sd−1. The radius of Sd−1 is often fixed.
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2 Why study thermal CFTs? Holography

• A theoretically very important reason to study thermal CFTs is because some of them are
holographic, in which case they correspond to black holes in AdSd+1.

• How do we see this? First, intuitively: a thermal state has many particles (to do proper
statistics), so a thermal CFT corresponds to many particles in the AdSd+1 bulk. Because
of the potential, they gather around the origin and collapse into a black hole.

• Secondly, we argue more rigorously the other way around. Start with AdSd+1-Schwarzschild
spacetime, and ask what it is dual to.

• The (Euclidean) metric is

ds2 = V dτ2 +
dr2

V
+ r2dΩd−1 (6)

with the following blackening function:

V = 1 +
r2

L2
− ωdM

rd−2
(7)

where ωd is a dimensionful constant that depends on d (through e.g. Newton’s constant).

• A horizon occurs when V = 0; the event horizon is at r+, the largest r for which this
happens, and forms the edge of spacetime in Euclidean signature (afterwards, the metric
signature is indeterminate).

• If δr = r − r+ > 0 is small (i.e. δr � r+), then the metric becomes

ds2 = V ′(r+)δrdτ2 +
dδr2

V ′(r+)δr
+ (δr + r+)2dΩd−1

=
[V ′(r+)]2

4
x2dτ2 + dx2 +

(

1

4
V ′(r+)x2 + r+

)2

dΩd−1 (8)

with x = 2
√

δr/V ′(r+).

• The τ, x-plane should become Euclidean space for such small distances (since space is
locally flat); this is only possible if θ ≡ 1

2V
′(r+)τ ∈ [0, 2π). Thus, the periodicity of τ has

to be β = 4π
V ′(r+) .

• The Euclidean metric at any fixed r (including r → ∞) is therefore precisely S1 × Sd−1.
At the boundary, we must have a thermal CFT! Its temperature is the radius of the S1,
which in this case is

β =
4π

V ′(r+)
=

4πr+L
2

r2
+d+ (d− 2)L2

≤ 2πL

d− 1
(9)

This immediately tells us that β needs to be low enough (the maximum β occurs at
r+ = L), i.e. the temperature needs to be sufficiently high, for the AdSd+1-Schwarzschild
spacetime to make sense. Otherwise, a thermal CFT is just dual to regular old AdSd+1,
with some hot gas inside.
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3 Why study thermal CFTs? Statistical physics

• An important property of statistical physics systems is universality: near a critical point,
the correlation length diverges (by definition) and hence the system is described by a
CFT. Which CFT that is, depends solely on the symmetry group because it determines
where the RG flow will be directed to.

• Consider for example the Ising model, in d dimensions, with Hamiltonian

H = −J
∑

〈i,j〉

σiσj − h
∑

j

σj (10)

• For h = 0, you see that it has a Z2 symmetry. In general, we could assign a vector to each
lattice site and enhance the Z2 symmetry to an O(N) symmetry.

• This can be studied using the O(N) field theory, defined with

S = −
ˆ

ddx

(

1

2
(∂φi)

2 +
λ

4!
(φiφi)

2
)

(11)

where a sum over the index i is implicit.

• The four-point interaction has [λ] = 4 − d, and therefore it is relevant for d < 4; in these
cases you get an IR fixed point, and the model is in the same universality class as the
(h = 0) Ising model.

• Close to d = 4 (i.e. d = 4 − ε) you can study this fixed point perturbatively in ε; far away
(d = 2 or d = 3) you need something else.

• A good starting point is to do a Hubbard-Stratonovich transformation, wherein you replace
the action by

S = −
ˆ

ddx

(

1

2
(∂φi)

2 +
1

2
σφ2

i − 3!σ2

4λ

)

(12)

• These two actions are equivalent because you can compute the σ integral in the partition
function:

ˆ

D[σ] eiS = e− i
2

´

ddx (∂φi)
2

ˆ

D[σ] e−
´

ddx
(

3!(ε−i)
4λ

σ2+ i
2

φ2
i
σ
)

= e− i
2

´

ddx (∂φi)
2
Ce

− 1
2

φ2
i

2
2λ

3!(ε−i)

φ2
i

2

= Ce−i
´

ddx
(

1
2

(∂φi)
2+ λ

4!
(φiφi)

2
)

(13)

• Observe that the quadratic σ term has coupling [λ−1] = d− 4 < 0, so it is IR-irrelevant;
the fixed point is located at λ → ∞.

• An important effect at non-zero temperatures is that φi acquires a mass. You can see this
from the partition function, where you can now integrate out the φi fields. For λ → ∞,
the result is

Z =

ˆ

D[σ]e− N
2

Tr ln(−∂µ∂µ+σ) (14)
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• This can be computed using a saddle-point approximation if N → ∞. For a thermal state
in d = 3, the saddle-point is located where

∂

∂σ
Tr ln(−∂µ∂

µ + σ) =
∑

n∈Z

ˆ

d2p

(2π)2

1

ω2
n + p2 + σ

= 0 (15)

where ωn = 2πn/β are the eigenvalues of the Laplace operator on a circle (the compactified
time dimension; for now we take the spatial dimensions to be non-compact).

• You can then do the sum, regulate the integral (e.g. by introducing a cutoff) and renor-
malise it; the result is that at the saddle-point, the expectation value of σ itself is

〈σ〉β =
4

β
ln2

(

1 +
√

5

2

)

≡ m2
th (16)

• The interpretation as a mass follows from the two-point function:

〈φaφb〉β (ωn,k) = − iδab

−ω2
n + k2 + 〈σ〉β

(17)

4 Further reading

• Emergent spacetime and holographic CFTs;

• Anti de Sitter space and holography (especially section 3);

• Introduction to Gauge/Gravity duality;

• Lectures on AdS/CFT from the Bottom Up;

• The Conformal Bootstrap at Finite Temperature (especially section 5.1);

• and Thermal effects in conformal field theories.
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