Why study thermal CFTS?

Hidde Stoffels

January 27, 2026

1 What is a thermal CFT?

e An alternative way to formulate quantum mechanics is to use density matrices, e.g. p =
| W) (¥|, instead of Hilbert space vectors |¥). Then an expectation value is defined as
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e This can also accommodate cases where you don’t know the exact Hilbert space state of
the system: take linear combinations of density matrices. Then the expectation value is
as if you're in any particular state with some probability:
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o This is ideal for a system at a given temperature, since then the microstate is unknown (too
many degrees of freedom, too many fluctuations). Instead, we average over all possible
energy states with a Boltzman factor as weight. For a quantum system at temperature
T = B!, this means that
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e In other words, if we Wick rotate to 7 = it and assume that 71 > 7 to ensure convergence,
the Euclidean two-point function g(7y, ) = ¢g(7) with 7 = 7 — 79 should obey

9(r) = g(r +5) (5)

o This is known as the Kubo-Martin-Schwinger (KMS) condition. Axiomatically, it defines
what we mean by a thermal state; a thermal CFT is simply a CFT in a thermal state.

e In the Euclidean case, you can interpret the KMS condition as a compactification in one
direction: R? becomes S' x R¢1,

e For CFTs, we are used to working in Fuclidean signature; additionally, we often compact-
ify the spatial directions as well (to combat IR divergences). Thus, thermal CFTs are
equivalent to CFTs on a compact manifold S x S9!, The radius of S¢~! is often fixed.



2 Why study thermal CFTs? Holography

A theoretically very important reason to study thermal CFTs is because some of them are
holographic, in which case they correspond to black holes in AdS ;1.

How do we see this? First, intuitively: a thermal state has many particles (to do proper
statistics), so a thermal CFT corresponds to many particles in the AdS;,1 bulk. Because
of the potential, they gather around the origin and collapse into a black hole.

Secondly, we argue more rigorously the other way around. Start with AdS,1-Schwarzschild
spacetime, and ask what it is dual to.

The (Euclidean) metric is
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with the following blackening function:
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where wy is a dimensionful constant that depends on d (through e.g. Newton’s constant).

A horizon occurs when V' = 0; the event horizon is at r4, the largest r for which this
happens, and forms the edge of spacetime in Euclidean signature (afterwards, the metric
signature is indeterminate).

If or = r —ry > 0is small (i.e. dr < r4), then the metric becomes
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with © = 2/r/V'(r4).

The 7, z-plane should become Euclidean space for such small distances (since space is
locally flat); this is only possible if 6 = %V’ (r4)7 € [0,27). Thus, the periodicity of 7 has
to be g = %

The Euclidean metric at any fixed r (including 7 — oo) is therefore precisely S' x 91,
At the boundary, we must have a thermal CFT! Its temperature is the radius of the S*,
which in this case is
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This immediately tells us that 5 needs to be low enough (the maximum [ occurs at
ry = L), i.e. the temperature needs to be sufficiently high, for the AdS;;-Schwarzschild
spacetime to make sense. Otherwise, a thermal CFT is just dual to regular old AdSgy1,
with some hot gas inside.



3 Why study thermal CFTs? Statistical physics

An important property of statistical physics systems is universality: near a critical point,
the correlation length diverges (by definition) and hence the system is described by a
CFT. Which CFT that is, depends solely on the symmetry group because it determines
where the RG flow will be directed to.

Consider for example the Ising model, in d dimensions, with Hamiltonian

H:—JZUin—hZUj (10)
(i.3) J

For h = 0, you see that it has a Zs symmetry. In general, we could assign a vector to each

lattice site and enhance the Zo symmetry to an O(N) symmetry.

This can be studied using the O(N) field theory, defined with
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where a sum over the index ¢ is implicit.

The four-point interaction has [A] = 4 — d, and therefore it is relevant for d < 4; in these
cases you get an IR fixed point, and the model is in the same universality class as the
(h = 0) Ising model.

Close to d = 4 (i.e. d = 4 —€) you can study this fixed point perturbatively in ¢; far away
(d =2 or d = 3) you need something else.

A good starting point is to do a Hubbard-Stratonovich transformation, wherein you replace
the action by
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These two actions are equivalent because you can compute the o integral in the partition
function:
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Observe that the quadratic o term has coupling [A\™'] = d — 4 < 0, so it is IR-irrelevant;
the fixed point is located at A — oo.

An important effect at non-zero temperatures is that ¢; acquires a mass. You can see this
from the partition function, where you can now integrate out the ¢; fields. For A — oo,
the result is
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This can be computed using a saddle-point approximation if N — oo. For a thermal state
in d = 3, the saddle-point is located where
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where w,, = 2n/ are the eigenvalues of the Laplace operator on a circle (the compactified
time dimension; for now we take the spatial dimensions to be non-compact).

You can then do the sum, regulate the integral (e.g. by introducing a cutoff) and renor-
malise it; the result is that at the saddle-point, the expectation value of o itself is
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The interpretation as a mass follows from the two-point function:

(Batn)s o) =~ gl (17)

4 Further reading

Emergent spacetime and holographic CFTs;

Anti de Sitter space and holography (especially section 3);

Introduction to Gauge/Gravity duality;

Lectures on AdS/CFT from the Bottom Up;

The Conformal Bootstrap at Finite Temperature (especially section 5.1);

and Thermal effects in conformal field theories.
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