

Example Questions.

III.1.1.

Example 1 from this section deals with the cyclic group.

Let G be cyclic of finite order n . Recall the resolution of \mathbb{Z} over $\mathbb{Z}G$. ($\mathbb{Z}G \cong \frac{\mathbb{Z}[t]}{t^k - 1}$).

$$\dots \xrightarrow{N} \mathbb{Z}G \xrightarrow{t-1} \mathbb{Z}G \xrightarrow{N} \mathbb{Z}G \xrightarrow{t-1} \mathbb{Z}G \rightarrow \mathbb{Z} \rightarrow 0$$

$$\text{where } N = 1+t+t^2+\dots+t^{n-1} = \sum_{g \in G} g.$$

Let $M \in \mathbb{Z}G\text{-Mod}$. Then $H_*(G, M)$ is the homology of

$$\dots \xrightarrow{N} M \xrightarrow{t-1} M \xrightarrow{N} M \xrightarrow{t-1} M \dots$$

$$\text{because } H_*(G, M) := H_*(\mathbb{Z} \otimes_G M) \text{ and } \mathbb{Z}G \otimes_G M \cong M \\ (g \otimes m \mapsto 1 \otimes g^m)$$

And $H^*(G, M)$ is the cohomology of

$$M \xrightarrow{t-1} M \xrightarrow{N} M \xrightarrow{t-1} M \xrightarrow{N} \dots$$

$$\text{because } H^*(G, M) := H^*(\text{Hom}_{\mathbb{Z}G}(\mathbb{Z}, M)) \text{ and } \text{Hom}_{\mathbb{Z}G}(\mathbb{Z}G, M) \cong M \\ (g \mapsto m) \mapsto g^*m \\ u(g) = m \Rightarrow g \cdot u(1) = m$$

We have that $Ng = (1+g+\dots+g^{n-1})g = N$.

$$g^N = g(1+g+\dots+g^{n-1}) = N$$

So $Ngm = Nm$ & $gNm = Nm$. So $\bar{N}: M_G \rightarrow M_G$ is well defined. (called the norm map). Note, we didn't need G to be cyclic group or abelian for this to work. $N = \sum_{g \in G} g$ always has this property.

1a) Show $\ker \bar{N}$ and $\text{coker } \bar{N}$ are annihilated by $\mathbb{Z}G$.

We have $Nm = \mathbb{Z}Gm$ for $m \in M_G$
 also $Nm = \mathbb{Z}Gm$ for $m \in M^G$.

Let $m \in \ker(\bar{N})$, then $\mathbb{Z}Gm = Nm = 0$
 Let $m \in \text{coker}(\bar{N})$, then $\mathbb{Z}Gm = Nm = 0 \in \frac{M^G}{NM_G} = \text{coker}(\bar{N})$.

b) Suppose M is a module of the form $M = \mathbb{Z}G \otimes A$
 where A is an abelian group and $g \cdot (r \otimes a) = gr \otimes a$.
 (M an induced module).

Show $\bar{N}: M_G \rightarrow M^G$ is an iso.

We have $M_G = \mathbb{Z} \otimes A$ and $M^G = (\mathbb{Z}N) \otimes A$.

(Second point because assume $r \in \mathbb{Z}G^G$ $r = \sum_h a_h h$
 $gr = \sum_h a_h g h = \sum_h a_g h \Rightarrow a_h = a_g h \forall g \Rightarrow a_h = \text{const.}).$

Now $\bar{N}: M_G \rightarrow M^G$ is clearly a bijection. $\mathbb{Z} \otimes a \mapsto \mathbb{Z}N \otimes a$.
 It is an iso by ring axioms.

c) Show \bar{N} is an iso if M is a projective $\mathbb{Z}G$ -module.
 (I needed help from Sln^2 for this).

Step 1) Show $F \cong \bigoplus \mathbb{Z}G$ free module satisfies

$$F_G \xrightarrow{\sim} F^G$$

We have $\mathbb{Z}G \cong \mathbb{Z}G \otimes \mathbb{Z}$. So $\Phi_i(\mathbb{Z}G) = \bigoplus (\mathbb{Z}G \otimes \mathbb{Z})$

$$= \mathbb{Z}G \otimes (\bigoplus \mathbb{Z}) = \mathbb{Z}G \otimes A \quad \text{K abelian.}$$

$$\text{So by b) } F_G \xrightarrow{\sim} F^G.$$

2) M projective $\Rightarrow F \cong M \otimes K$.

$$\text{We have } F_G \cong F \otimes_{\mathbb{Z}G} \mathbb{Z} \cong (M \otimes K) \otimes_{\mathbb{Z}G} \mathbb{Z} \cong M_G \otimes K_G.$$

$$\text{And } F^G \cong M^G + K^G \text{ by inspecting action } g \cdot (m, k) = (gm, gk).$$

Thus $\bar{N}: M_G \oplus K_G \xrightarrow{\sim} M^G \oplus K^G$ is $(u, k) \mapsto (Nu, Nk)$.

This restricts to an \mathbb{R}^G $M_G \oplus \{0\} \xrightarrow{\sim} M^G \oplus \{0\}$ because \bar{N} is G -linear in \mathbb{R}^G coord.