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We will cover Chapters 2 and 3 (up to Section 3.3) of Poonen’s Rational Points on Varieties today.

Varieties, base extension, scheme-valued points and curves

Schemes

This section is a reminder of some relevant definitions.

Definition (adjective scheme). A scheme X is:

• locally noetherian if X has a cover {Xi = SpecAi} where each Ai is a noetherian ring;

• noetherian if in addition the cover can be taken to be finite;

• connected if its underlying topological space is connected;

• irreducible if its underlying topological space is irreducible, i.e. whenever X = X1∪X2

with X1, X2 closed, either X1 = X or X2 = X;

• reduced if for every U ⊆ X open, OX(U) has no nilpotents;

• integral if X is non-empty and for every U ⊆ X open and non-empty, OX(U) is an
integral domain, or equivalently, if X is reduced and irreducible;

• normal if all local rings of X are integrally closed domains;

• regular if all local rings of X are regular, i.e. dimOX,x = dimK(X)mx/m
2
x.

Given morphisms of schemes f : X → S and g : Y → S, the fibre product of X and Y is
a scheme X ×S Y together with morphisms p : X ×S Y → X and q : X ×S Y → Y such that
p ◦ f = q ◦ g, and given any scheme T with morphisms p ′ : W → X and q ′ : W → Y, there
exists a unique map h : W → X×S Y with p ′ = h ◦ p and q ′ = h ◦ q. This is represented in the
commutative diagram:

W

X×S Y Y

X S

∃!h

q ′

p ′

q

p g

f

Theorem. Fibred products exist in the category of schemes.



Definition (Closed immersion). A morphism of schemes f : X → Y is a closed immersion if
f induces a homeomorphism between X and a closed subset of Y, and the map f# : OY →

f∗OX is surjective.

Definition (adjective morphism of schemes). A morphism of schemes f : X → Y is

• locally of finite type if there is a covering of Y by open affine subsets Vi = SpecBi such
that for each i, f−1(Vi) can be covered by open affine schemes Uij = SpecAij where
each Aij is a finitely generated Bi-algebra under the ring map Bi → Aij induced by
f|Uij

: Uij → Vj;

• of finite type if in addition the cover {Uij} of f−1(Vi) for each i can be taken to be finite;

• separated if the diagonal morphism ∆ : X → X×Y X is a closed immersion;

• universally closed if for any morphism Y ′ → Y, the induced morphism X ×Y Y ′ → Y ′

is a closed morphism taking closed sets to closed sets;

• proper if it is separated, of finite type and universally closed;

• projective if it factors into a closed immersion X → Pn
Y = Proj Y[x0, . . . , xn] for some

n, followed by a projection Pn
Y → Y.

For S a scheme, a scheme over S or an S-scheme is a scheme X equipped with a morphism
f : X → S, called the structure morphism. We say X is adjective over S if the structure morphism
X → S is adjective.

An S-morphism between S-schemes X and Y is a morphism of schemes X → Y such that

X Y

S

commutes. Write SchemeS to denote the category of schemes over S and HomS(X, Y) the set
of S-morphisms from X to Y.

Note. For a ring R, we sometimes write R as an abbreviation for SpecR, the use of which is clear
from context. For example, X×k Y and X×Speck Y are exchangeable.

Varieties

We use a definition of a variety that is more expansive.

Definition (k-variety). A variety over k is a separated scheme X of finite type over Speck.

A curve is a variety of pure dimension 1, a surface is a variety of pure dimension 2, a 3-fold
is a variety of pure dimension 3, and so on. The dimension of a variety is its dimension as a
topological space (i.e. the length of the longest chain Z0 ⊊ Z1 ⊊ · · · ⊊ Zd of closed irreducible
subsets), and pure means that all irreducible components have the same dimension.
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Base change in algebraic geometry

Let S be a fixed scheme which we think of as a base scheme, meaning that we are interested in
the category of schemes over S.

Definition (Base extension). If S and S ′ are base schemes and S ′ → S is a morphism, then
for any scheme X over S, the base extension of X is the S ′-scheme XS ′ = X ×S S ′. The base
extension of a morphism of S-schemes f : X → Y is the induced S ′-morphism f ′ : XS ′ → YS ′ ,
namely idS ′ ×idS

f.

Examples. 1. If X is a k-variety or a k-scheme and k ⊆ L is a field extension, then XL is
the scheme defined by the same equations but instead considered over L.

2. Let X be a k-scheme, and let σ ∈ Aut k. The base extension of X induced by the
morphism σ∗ : Speck → Spec k is a new k-scheme σX.

σX X

Spec k Spec k
σ∗

X and σX are isomorphic as abstract schemes but not necessarily as k-schemes. For
example, if E/k is an elliptic curve and k is an algebraically closed field, then E and
σE are isomorphic over k if and only if j(E) = j(σE) = σ(j(E)), where j(E) is the
j-invariant of E.

3. Let S be a scheme and let X be an S-scheme with structure morphism f : X → S. If
U is an open subscheme of the base scheme S, then XU is also written f−1U since its
underlying topological space is f−1U. Ditto for closed subschemes of S.

4. Let f : X → Y be a morphism of schemes. Let y ∈ Y and let κ(y) = OY,y/my be the
residue field of the local ring OY,y. There is a natural morphism Specκ(y) → Y. The
scheme-theoretic fibre at y is Xy = Spec κ(y) ×Y X, alternatively written f−1(y) which
is homeomorphic to its underlying topological space.

If A is a ring, X is an A-scheme and p ⊆ A is a prime ideal, then the fibre Xp is called
the reduction of X modulo p.

5. Let X be the affine plane curve over Q defined by the equation x2 + y2 = 1, so that
X = SpecQ[x, y]/(x2+y2−1). Let Y be the plane curve defined by x2+y2+1 = 0. Let
L = Q[i]. Then XL ≃ YL as L-varieties, but X ̸≃ Y since Q[x, y]/(x2 + y2 − 1) admits a
Q-algebra homomorphism to Q (i.e. X has a Q-rational point) but Q[x, y]/(x2+y2+1)

does not.

A variety may lose integrality, connectedness, irreducibility, reducedness or regularity by
base extension of the ground field. Hence we introduce the following definition:

Definition (Geometrically adjective scheme). Let X be a scheme over a field k. X is ge-
ometrically integral if and only if Xk̄ is integral. Similarly define geometrically connected,
geometrically irreducible, geometrically reduced and geometrically regular.
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Examples (adjective does not imply geometrically adjective). 1. Let k = R and let X =

SpecR[x]/(x2 + 1). Then X ∼= SpecC is a single point and XC = Spec(C[x]/(x − i) ×

C[x]/(x+ i)) is the disjoint union of two points. X is connected, irreducible and inte-
gral, but it is not geometrically connected, geometrically irreducible or geometrically
integral. X is, however, geometrically reduced.

2. Let k = Fp(t) and let X = Spec k[x]/(xp − t). Then xp − t is irreducible over k and
k[x]/(xp − t) is a field, so X is reduced. x − t1/p is a nilpotent element of the ring
k̄[x]/(xp − t), so X is not geometrically reduced.

3. Let k = Fp(t) and let X be the curve y2 = xp − t. Then X is regular since the partial
derivatives of f(x, y) = y2 − xp + t do not simultaneously vanish at any x, y ∈ k.
Now f(x, y) = y2 − (x− t1/p) over k̄, so Xk̄ has a singularity at (t1/p, 0) and X is not
geometrically regular.

Function fields

If X is an integral scheme, then there is a unique generic point η such that {η} = X. The stalk of
OX at η is a field, called the function field, denoted by K(X). If U = SpecA is any open affine
subset of X, then K(X) is isomorphic to the field of fractions of A.

Proposition. Let L be a finitely generated field extension of k. Then there exists a normal projective
integral k-variety X with K(X) ≃ L.

For an integral k-variety X, the properties of geometrically irreducible, geometrically re-
duced and geometrically integral are equivalent to field-theoretic properties of the field exten-
sion K(X)/k.

Definition (Separable field extension). A field extension L/k is separable if the ring L⊗k k ′

is reduced for all field extensions k ′/k.

This definition of separable agrees with the usual notion for algebraic field extensions.

Proposition. Let L/k be a finitely generated field extension.

(i) L is separable over k if and only if L is a finite separable extension of a purely transcendental
extension k(t1, . . . , tn).

(ii) Let n = tr deg(L/k). Elements t1, . . . , tn of L generate a purely transcendental extension
of k over which L is a finite separable extension if and only if dt1, . . . , dtn form a basis for
the L-vector space ΩL/k of Kähler differentials.

Example. If L is separable over k, then every subextension is separable over k, and in
particular every finite subextension is separable over k.

Let k = Fp(s, t) and let L be the function field of the variety X in A2
k defined by sxp +

typ = 1. tr deg(L/k) = 1 since X is a curve, the only finite subextension of k contained in
L is k and L is not separable over k since L⊗k k ′ is not reduced for k ′ = Fp(s

1/p, t1/p).
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Definition (Primary field extension). A field extension L/k is primary if the largest separa-
ble algebraic extension of k contained in L is itself.

Purely inseparable algebraic field extensions are primary. Purely transcendental field ex-
tensions are primary and separable.

Proposition. Let X be a k-scheme of finite type. Then TFAE:

(i) X is geometrically irreducible.

(ii) There is a separably closed field L containing k such that the L-scheme XL is irreducible.

(iii) For all fields L containing k, the L-scheme XL is irreducible.

(iv) X is irreducible, and the field extension K(X)/k is primary.

Proposition. Let X be a k-scheme of finite type. Then TFAE:

(i) X is geometrically reduced.

(ii) There is a perfect field L containing k such that the L-scheme XL is reduced.

(iii) For all fields L containing k, the L-scheme XL is reduced.

(iv) X is reduced, and for each irreducible component Z of X, the field extension K(Z)/k is sepa-
rable.

Combining the two gives conditions for geometric integrality:

Proposition. Let X be a k-scheme of finite type. Then TFAE:

(i) X is geometrically integral.

(ii) There is an algebraically closed field L containing k such that the L-scheme XL is integral.

(iii) For all fields L containing k, the L-scheme XL is integral.

(iv) X is integral, and the field extension K(X)/k is primary and separable.

Let L/k be a finitely generated field extension, so L = K(X) for some integral k-scheme X of
finite-type. The constant field of X is the maximal algebraic extension k ′ of k contained inside L.
If t1, . . . , tn is a transcendence basis of L/k, then

[k ′ : k] = [k ′(t1, . . . , tn) : k(t1, . . . , tn)] ⩽ [L : k(t1, . . . , tn)] < ∞,

so k ′ is a finite extension of k.

Proposition. Let X be an integral k-scheme of finite-type and let k ′ ⊇ k be its constant field.

(i) If X is geometrically integral, then k ′ = k.

(ii) If X is proper, then OX(X) is a subfield of k ′.

(iii) If X is normal, then k ′ ⊆ OX(X).
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Scheme-valued points

Let X be a subvariety of An
k defined by the system of polynomial equations

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0
...

fm(x1, . . . , xn) = 0.

Then X = SpecA where A = k[x1, . . . , xn]/(f1, . . . , fm). A k-rational point on X is an n-
tuple (a1, . . . , an) ∈ kn such that f(a1, . . . , an) = · · · = fm(a1, . . . , an) = 0. The set of k-
rational points on X is in bijection with the set Homk-Alg(A, k) which is in bijection with the set
Homk-Sch(Spec k, X).

Definition (Scheme-valued point). Let X and T be S-schemes. A T -valued point of X is an
S-morphism T → X. Write X(T) for the set of T -valued points on X.

Notation. If S = Spec k and T = SpecL where L/k is a field extension, then an element of X(L)
is called an L-rational point.

Definition (Functor of points). The functor of points of X is the functor

hX : Scheme
op
S −→ Sets

T 7−→ X(T) = HomS(T, X).

In particular, for each S-morphism f : T ′ → T , then hX(f) : X(T) → (T ′) is the map that
sends each S-morphism φ : T → X to the composition φ ◦ f : T ′ → T → X.

A morphism of S-schemes X → Y induces a map of sets X(T) → Y(T) for each S-scheme T ,
and whenever T ′ → T is an S-morphism, we obtain a commutative square

X(T ′) X(T)

Y(T ′) Y(T)

In other words, the S-morphism between X and Y induces a natural transformation of contravari-
ant functors hX, hY . A corollary of Yoneda’s lemma is that:

Lemma. The set of natural transformations between hX and hY is exactly hY(X) = HomS(X, Y).

Definition (Fine moduli space). A functor F : Scheme
op
S → Sets is representable if F ∼= hM

for some S-scheme M. We say M represents F or M is a fine moduli space for F.

Even if F is not representable, it can still be approximated by a functor hM:
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Definition (Coarse moduli space). Let F : Scheme
op
S → Sets be a functor. An S-scheme M

equipped with a natural transformation ι : F → hM is a coarse moduli space for F if:

(i) For every other S-scheme M ′ with a morphism F → hM ′ , there is a unique S-
morphism M → M ′ such that F → hM ′ factors as F → hM → hM ′ .

(ii) For every algebraically closed field k and morphism Spec k → S, ι induces a bijection
F(Spec k) → M(k).

Fine moduli spaces and coarse moduli spaces are unique, and they are equivalent notions
for representable functors.

Example (Moduli space of curves). Fix k to be an algebraically closed field. For g ∈ N,
let Mg(k) denote the set of smooth projective geometrically integral curves of genus g

up to isomorphism. More generally for any scheme T , let Mg(T) be the set of isomor-
phism classes of smooth proper T -schemes whose fibres are geometrically integral curves
of genus g. The functor F = Mg is not represented by a scheme since there are nontrivial
families of curves all of whose fibres are isomorphic to each other.

In the case g = 1, Mg(k) is parametrized by the j-invariants, which form an affine line
M1 = A1

k that acts as a coarse moduli space for M1. For g ⩾ 2, Mumford has shown that
there is a coarse moduli space Mg such that:

(i) The set of closed points of Mg is in one-to-one correspondence with the set of iso-
morphism classes of curves of genus g.

(ii) If f : X → T is any flat family of curves of genus g, then there is a morphism h : T →

Mg such that for each closed point t ∈ T , Xt is in the isomorphism class of curves
determined by the point h(t) ∈ Mg.

For g ⩾ 2, Mg is an irreducible quasi-projective variety of dimension 3g−3 over any fixed
algebraically closed field.

Definition (Dominant morphism). A morphism of schemes f : X → Y is dominant if f(X) is
dense in the topological space Y. f is scheme-theoretically dominant if either of the following
equivalent conditions holds:

(i) Whenever U is an open subscheme of Y, and f|f−1U : f−1U → U factors as f−1U →

Z ↪→ U for some closed subscheme Z of U, we have Z = U.

(ii) The sheaf homomorphism OY → f∗OX is injective.

Scheme-theoretically dominant implies dominant.

Proposition. Let X be a separated S-scheme. If T ′ → T is a scheme-theoretically dominant S-
morphism, then X(T) → X(T ′) is injective.

Corollary. If R ⊆ R ′ is an inclusion of rings and X is a separated R-scheme, then X(R) → X(R ′)

is injective.
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Corollary. Let X be a reduced S-scheme, and let Y be a separated S-scheme. Let U be a dense open
subscheme of X. If f and g are morphisms X → Y such that f|U = g|U, then f = g.

Proposition. Let k be a field. If X and Y are connected k-schemes and X has a k-rational point, then
X ×k Y is connected. In particular, a connected k-scheme with a k-rational point is geometrically
connected.

Proposition. Let X be a finite-type scheme over a field k such that X(k) is dense in X. Then:

(i) If X is irreducible, then X is geometrically irreducible.

(ii) If X is reduced, then X is geometrically reduced.

(iii) If X is integral, then X is geometrically integral.

Closed points

Definition (Closed point). A closed point of a scheme X is a point x ∈ X such that {x} is
Zariski closed in X.

If X is a variety over an algebraically closed field k, the map X(k) → {closed points in X}

with (f : Spec k → X) 7→ f(Spec k) is a bijection. The nonclosed points of X are generic points
of the positive-dimensional integral subvarieties of X.

Proposition. Let X be a k-variety and let x ∈ X. Then the following are equivalent:

(i) The point x is closed.

(ii) The dimension of the closure of {x} is 0.

(iii) The residue field κ(x) is a finite extension of k.

Definition (Degree of closed point). The degree of a closed point x on a k-variety X is the
degree of the field extension κ(x)/k.

Proposition. Let X be a k-variety. Then the map

{Gk-orbits in X(k̄)} −→ {closed points of X}

orbit of (f : Spec k̄ → X) 7−→ f(Spec k̄)

is a bijection.

In particular, if X is a k-variety, then k-points of X are in bijection with closed points with
residue field k.
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Curves

Let X be a regular, projective, geometrically integral curve over a field k. The arithmetic genus
of X is pa(X) = h1(X,OX) and the geometric genus of X is pg(X) = h0(X,ω◦

X), where ω◦

X is
the dualizing sheaf on X. By Serre duality, H1(X,OX) ≃ H0(X,ω◦

X)
∨, so these are equivalent

notions. The genus of X is g(X) = pa(X) = pg(X).
If Y is a curve birational to a regular, projective, geometrically integral curve X, define

g(Y) = g(X).

Theorem. Let X be a regular, projective, geometrically integral k-curve and let L/k be a field
extension. Then:

(i) We have g(XL) ⩽ g(X), with equality if and only if XL is regular.

(ii) The difference g(XL) − g(X) is divisible by (p− 1)/2, where p = chark > 0.

(iii) If L is separable over k, then g(XL) = g(X).

Recall that a prime divisor on X is an integral closed subscheme of codimension 1 and the
group DivX of Weil divisors is the free abelian group generated by prime divisors. Since X is a
curve, the prime divisors of X are the closed points P of X.

Each D ∈ DivX gives rise to a line bundle O(D). This induces an isomorphism from the
group of Weil divisors modulo linear equivalence to the Picard group PicX of isomorphism
classes of line bundles.

The degree of a divisor D =
∑

nPP ∈ Div(X) is degD =
∑

nP degP. The Riemann-Roch
space of a divisor D is L(D) = H0(X,O(D)). Define l(D) = dimkL(D) = h0(X,O(D)). A
canonical divisor of X is a divisor K such that ω◦

X = O(K).

Theorem (Riemann-Roch theorem). Let X be a regular, projective, geometrically integral k-
curve and let K be a canonical divisor of X. Then l(D) − l(K−D) = degD+ 1− g.

Rational points over topological fields

If k is a finite field and X is a k-variety, then X(k) is finite. Now let k be a topological field (e.g.
a local field) and let X be a k-variety. Define the analytic topology on X(k) as follows:

• Give the set An
k = k× · · · × k the product topology.

• If X is a closed subvariety of An
k , then give X(k) ⊆ An

k the subspace topology.

• If X is obtained by gluing open affine sets X1, . . . , Xm, then use the same gluing data to
glue the topological spaces X1(k), . . . , Xm(k).

Two different affine open coverings give the same topology on X(k). Any morphism of k-
varieties X → Y induces a continuous map X(k) → Y(k).

Proposition. Let k be a local field. If X → Y is a proper morphism of k-varieties, then X(k) →

Y(k) is a proper map of topological spaces, i.e. the inverse image of any compact subset of Y(k)
is compact. In particular, if X is a k-variety and X is proper over k, then X(k) is compact. The
converse holds when k = C.

If k = C, then we can equip the topological space X(C) with a sheaf of germs of holomor-
phic functions to get a locally ringed space Xan.
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Finiteness conditions, spreading out and flat morphisms

Quasi-compact and quasi-separated morphisms

Definition (Quasi-compact scheme). A scheme X is quasi-compact if one of the following
equivalent conditions is satisfied:

(i) The topological space of X is quasi-compact, i.e. every open cover of X has a finite
subcover.

(ii) The scheme X is a finite union of affine open subsets.

Definition (Quasi-compact morphism). A morphism of schemes f : X → Y is quasi-compact
if one of the following equivalent conditions is satisfied:

(i) There is an affine open covering {Yi} of Y such that for each i, the scheme f−1Yi is
quasi-compact.

(ii) For every affine open subset U ⊆ Y, the scheme f−1U is quasi-compact.

Definition (Quasi-separated morphism). A morphism of schemes f : X → Y is quasi-
separated if one of the following equivalent conditions is satisfied:

(i) There is an affine open covering {Yi} of Y such that whenever X1, X2 are affine open
subsets of f−1Yi, the intersection X1 ∩ X2 is a union of finitely many affine open
subsets.

(ii) For every affine open U ⊆ S and affine open subsets X1, X2 ⊆ f−1U, the intersection
X1 ∩ X2 is a union of finitely many affine open subsets.

(iii) The diagonal morphism ∆ : X → X×Y X is quasi-compact.

If X is noetherian, then every open subscheme of X is quasi-compact, so every morphism
X → Y is both quasi-compact and quasi-separated.

Example. Let A be a polynomial ring k[x1, x2, . . . ] in countably many indeterminates over
some field k. Let P ∈ SpecA be the closed point corresponding to the maximal ideal
(x1, x2, . . . ). Let U be the open subscheme of SpecA obtained by removing P. Then the
open subsets D(xi) of SpecA form an open cover for U with no finite subcover, so U is not
quasi-compact.

Let X be the infinite-dimensional affine space with a doubled origin, i.e. the scheme
obtained by gluing two copies X1, X2 of SpecA along the copy of U in each. The identity
morphisms Xi → SpecA glue to give a morphism X → SpecA that is not quasi-separated,
since X1 and X2 are affine open subsets whose intersection U is not quasi-compact.
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Finite presentation

Definition (Finitely presented algebra). Let A be a commutative ring and let B be an A-
algebra, i.e. there is a ring homomorphism B → A. B is a finitely presented A-algebra if B is
isomorphic as an A-algebra to A[t1, . . . , tn]/I for some n ∈ N and some finitely generated
ideal I of the polynomial ring A[t1, . . . , tn].

Proposition. Let A be a commutative ring. An A-algebra is finitely generated if it is finitely
presented. The converse holds if A is noetherian.

Example (Finitely generated does not imply finitely presented). Let k be a field and let
A = k[x1, x2, . . . ]. Then the ideal I = (x1, x2, . . . ) ⊆ A is not finitely generated, and the
finitely generated A-algebra A/I is not finitely presented.

Definition (Morphism locally of finite presentation). Let X be an S-scheme with structure
morphism f. Let x ∈ X and let s = f(x). f is locally of finite presentation at x if there
exist affine neighborhoods V = SpecA of s and U = SpecB of x such that B is of finite
presentation over A. f is locally of finite presentation if it is locally of finite presentation at
every x ∈ X.

Remark. An S-scheme X is locally of finite presentation if and only if for every filtered inverse
system of affine S-schemes SpecAi (a morphism f : X → S is affine if f−1S0 is affine for each
affine open subscheme S0 of S), the natural map lim

−→
X(Ai) → X(lim

−→
Ai) is a bijection.

Definition (Morphism of finite presentation). A morphism f : X → S is of finite presentation
if it is locally of finite presentation, quasi-separated and quasi-compact.

In other words, f : X → Y is a morphism of finite presentation if for every affine open cover
Vj = SpecAj of Y, each f−1Vj has a finite cover of affine opens Uij = SpecBij such that:

• Each Bij is a finitely presented Aj-algebra, i.e. Bij ≃ Aj[x1, . . . , xn]/(f1, . . . , fm) for some
m,n and polynomials f1, . . . , fm.

• For any two such affine opens Uij and Ukj, their intersection Uij ∩ Ukj is a finite union
of affine opens each of which the ring of sections is a finitely generated algebra over Aj.

If Y is locally noetherian, then a morphism f : X → Y is locally of finite presentation if and only
if it is locally of finite type, and it is of finite presentation if and only if it is of finite type.

Spreading out

The principle of spreading out is that for schemes of finite presentation, whatever happens over
the generic point also happens over some open neighborhood of the generic point.
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Theorem (Spreading out). Let S be an integral scheme with function field K = K(S).

(i) Suppose that X is a scheme of finite presentation over K. Then there exist a dense open
subscheme U ⊆ S and a scheme X of finite presentation over U such that XK ≃ X.

(Spreading out schemes)

(ii) Suppose that X → S is of finite presentation. If adjective is a property that can be spread out
and XK → SpecK is adjective, then there exists a dense open subscheme U ⊆ S such that
XU → U is adjective. (Spreading out properties of schemes)

(iii) Suppose that X and X ′ are schemes of finite presentation over S, and f : XK → X ′

K is a
K-morphism. Then there exists a dense open subscheme U ⊆ S such that f extends to a
U-morphism XU → X ′

U. (Spreading out morphisms)

(iv) Let f : X → X ′ be an S-morphism between schemes of finite presentation over S. If adjective
is a property that can be spread out and f : XK → X ′

K is adjective, then there exists a dense
open subscheme U ⊆ S such that f|U : XU → X ′

U is adjective.

(Spreading out properties of morphisms)

The list of properties that can be spread out from a generic fibre to a dense open subscheme as
in (ii) and (iv) are: affine, closed immersion, finite, flat, geometrically connected, geometrically
integral, geometrically irreducible, geometrically reduced, immersion, isomorphism, étale, smooth,
unramified, G-unramified, fppf, fpqc, monomorphism, open immersion, projective, quasi-projective,
proper, quasi-affine, quasi-finite, radicial, separated and surjective.

Remark (Spreading out to an open neighborhood of a point). (i) can be generalized as follows:
Let S be a scheme and let s ∈ S. Then a scheme of finite presentation over SpecOS,s can be
spread out to a scheme X of finite presentation over some open neighborhood of s in S.

The ring OS,s is the injective limit of coordinate rings of the affine open neighborhood of s
in S, so SpecOS,s is a projective limit of schemes.

We give some standard applications of spreading out:

Proposition. Suppose that X is of finite presentation over a commutative ring A. Then there
exists a noetherian ring A0 contained in A and a scheme X0 of finite presentation over A0 with
(X0)A ≃ X.

If X and Y are Q-varieties whose base extensions XQ(t) and YQ(t) are isomorphic, where t

is an indeterminate, then one can specialize t to some rational number q to obtain an isomor-
phism X → Y.

Proposition (Specializing an isomorphism). Let L/k be a field extension. If X and Y are k-
varieties such that XL ≃ YL, then XF ≃ YF for some finite extension F/k.

Models over discrete valuation rings

Let R be a discrete valuation ring (dvr) with fraction field K, residue field k and uniformizer π,
and let X be a proper K-variety. The goal is to make sense of the reduction of X modulo π. The
scheme SpecR consists of two points: the generic point η = SpecK corresponding to the prime
(0) of R, and the closed point s = Speck corresponding to the maximal ideal (π) of R.
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Definition (Generic fibre and special fibre). Let XR be an R-scheme. The generic fibre of XR

is the fibre above the generic point, i.e. the K-scheme XK = XR×SpecRSpecK, and the special
fibre of XR is the fibre above the closed point, i.e. the k-scheme Xk = XR ×SpecR Spec k.

Definition (R-model). Let X be a K-scheme. An R-model of X is an R-scheme XR equipped
with an isomorphism XR ×R K → X of K-schemes.

Example. Let X = ProjQ7[x, y, z]/(xy − 7z2) be a curve over Q7. Then the schemes
ProjZ7[x, y, z]/(xy − 7z2) and ProjZ7[x, y, z]/(xy − z2), equipped with suitable isomor-
phisms, are Z7 models of X. The special fibre of the former is a reducible curve consisting
of the two lines x = 0 and y = 0, but the special fibre of the latter is irreducible, so they are
not isomorphic.

Dedekind domains

We generalize the definition of an R-model to Dedekind domains (i.e. integrally closed noethe-
rian domains of dimension at most 1).

Example. 1. The ring of integers in a number field is a Dedekind domain.

2. The coordinate ring of an affine regular integral curve over a field is a Dedekind
domain.

3. Any PID (and hence dvr) is a Dedekind domain.

4. The localization of a Dedekind domain at a prime ideal is a dvr.

A scheme over a Dedekind domain R has one generic fibre and many closed fibres, one for
each nonzero prime of R.

Theorem (Valuative criterion for properness). Let f : X → S be a morphism of finite type with
S Noetherian. Then f is proper if and only if whenever SpecR is an S-scheme with R a dvr and K

its fraction field, the natural map X(R) → X(K) is bijective, or in other words, whenever given a
commutative diagram and for T = SpecR and U = SpecK, given the a diagram

SpecK = U X

SpecR = T Y

f

then there exists a unique map T → X making the diagram commute.

We generalize the S = SpecR case to Dedekind domains:

Theorem. Let R be an integral domain, and let K = Frac(R). Let X be an R-scheme.

(i) If X is separated over R, then X(R) → X(K) is injective.

(ii) If X is proper over R and R is a Dedekind domain, then X(R) → X(K) is bijective.
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Flat morphisms

Recall the algebraic notion of a flat module:

Definition (Flat module). Let A be a ring and let M be an A-module. M is flat over A if
the functor N 7→ N⊗A M is an exact functor for N ∈ A-Mod, i.e. whenever

0 → N ′ → N → N ′′ → 0

is an exact sequence of A-modules, the induced sequence

0 → N ′ ⊗A M → N⊗A M → N ′′ ⊗A M → 0

is exact. If A → B is a ring homomorphism, B is flat over A if it is flat as a module.

Examples. 1. Free modules are flat. Any module over a field k is flat.

2. A module over a dvr or a Dedekind domain is flat if and only if it is torsion-free.

3. Any localization S−1A of A is flat.

Proposition. Let A be a ring and let M be an A-module.

(i) An A-module M is flat if and only if for every finitely generated ideal a ⊆ A, the map
a⊗M → M is injective.

(ii) If M is a flat A-module and A → B is a homomorphism, then M⊗A B is a flat B-module.

(Base extension)

(iii) If B is a flat A-algebra and N is a flat B-module, then N is also flat as an A-module.

(Transitivity)

(iv) M is flat over A if and only if Mp is flat over Ap for all p ∈ SpecA. (Localization)

Definition (Flat morphism). A morphism of schemes f : X → Y is flat at x ∈ X if OX,x is
flat as an OY,f(y)-module. f is flat if it is flat at every x ∈ X.

Definition (Faithfully flat morphism). A morphism of schemes f : X → Y is faithfully flat if
it is flat and surjective.

If A → B is a homomorphism of commutative rings, then SpecB → SpecA is flat if and
only if B is flat over A, and SpecB → SpecA is faithfully flat if and only if B is flat over A and
M⊗A B ̸= 0 for every non-zero A-module M.
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Dimension and relative dimension

Definition (Dimension). Let X be a topological space. The dimension dimX of X is the
element of {−∞, 0, 1, 2, . . . ,∞} defined by the formula

dimX = sup {n ∈ N : X0 ⊊ X1 ⊊ · · · ⊊ Xn irreducible closed subsets of X}.

The dimension of X at x ∈ X is

dimx X = inf {dimU : x ∈ U ⊆ X open}.

Remark. The empty set is not irreducible. dimX = −∞ if and only if X = ∅.

Theorem. Let X be a scheme locally of finite type over a field k and let x ∈ X. Then

dimx X = dimOX,x + tr deg(κ(x)/k).

Definition (Relative dimension). Let f : X → S be a continuous map of topological spaces
and let x ∈ X. The relative dimension of X over S at x is

dimx f = dimx f
−1(f(x)).

Proposition. Let f : X → S be a flat k-morphism between irreducible k-varieties. Then

dimx f = dimX− dimS.

In particular, dimx f is independent of x.
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