

Deformation Theory Group

Talk 1

Seminar on Deformation Theory

Motivation. Consider a field $K = \bar{k}$, and a curve $C \subseteq \mathbb{P}_K^2$ of $\deg C = d$, i.e., $C = V(f)$ for some polynomial $f(x, y, z) = a_0 x^d + \dots + a_n z^d$, $a_i \in K$, $n = \binom{d+2}{2} - 1$. If we consider $\alpha = [a_0, \dots, a_n] \in \mathbb{P}_K^n$, there is a variety $\mathcal{Y} \subseteq \mathbb{P}^2 \times \mathbb{P}^n$ given by $a_0 x^d + \dots + a_n z^d = 0$ s.t. the projection $\text{pr}_1: \mathcal{Y} \rightarrow \mathbb{P}^n$ gives a one-to-one correspondence between degree d curves and points in \mathbb{P}^n .

Usually, geometric objects come in families that we can parameterize by a scheme, i.e., there is a morphism $f: X \rightarrow T$ s.t. we want to understand his fibers (local study of parameter spaces). Our goal is to understand fibers of a morphism around a given base point.

Using deformation techniques we can study the following families of objects:

- Subschemes of a fixed scheme X .
- Coherent sheaves on a fixed scheme X .
- Deformations of abstract of schemes.

Question. What kind of morphisms $f: X \rightarrow T$ are a good notion of a family?

§1. Flat morphism.

History. Introduced by J. P. Serre in his paper GAGA to explain the relation between the local rings $\mathcal{O}_{X,x}$ (algebraic) and $\mathcal{H}_{X,x}$ (analytic).

Def. Let A be a ring, M an A -mod. M is flat over A if the functor

$$M \otimes_A - : A\text{-mod} \rightarrow A\text{-mod}, \quad N \mapsto M \otimes_A N$$

is left exact, i.e.,

$$0 \rightarrow N_1 \rightarrow N_2 \rightarrow N_3 \rightarrow 0 \text{ exact}$$

$$\Rightarrow 0 \rightarrow M \otimes_A N_1 \rightarrow M \otimes_A N_2 \rightarrow M \otimes_A N_3 \rightarrow 0 \text{ exact.}$$

If $f: A \rightarrow B$ is a ring morphism, we say B is flat over A if it is flat as an A -module.

Proposition.

(1) $M \in A\text{-mod}$ is flat $\Leftrightarrow \forall I \subseteq A$ f.g.,

$$I \otimes_A M \rightarrow M \text{ is injective.}$$

(2) Base change: if $M \in A\text{-mod}$ is flat, $f: A \rightarrow B$ ring morphism, $M \otimes_A B$ is a flat B -module.

(3) Transitivity: B flat A -alg, N flat B -mod, then N is a flat A -mod.

(4) Localization: $M \in A\text{-mod}$ is flat $\Leftrightarrow M_{\mathfrak{p}}$ is flat over $A_{\mathfrak{p}}$, $\forall \mathfrak{p} \in \text{Spec } A$.

(5) $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ exact, then

(a) M', M'' flat $\Rightarrow M$ flat

(b) M, M'' flat $\Rightarrow M'$ flat.

(6) If A is a noeth. local ring, M f.g. A -mod, then M flat $\Leftrightarrow M$ free.

Def. Let $f: X \rightarrow Y$ be a morphism of schemes,

f an \mathcal{O}_X -mod. We say f is flat over Y

at $x \in X$ if F_x is a flat $\mathcal{O}_{Y, f(x)}$ -mod.

(via the natural map $f^\# : \mathcal{O}_{Y, f(x)} \rightarrow \mathcal{O}_{X, x}$)

f is flat over Y if it is flat $\forall x \in X$.

X is flat over Y if \mathcal{O}_X is flat over Y .

Example. X noeth. scheme, $F \in \underline{\text{Coh}}(X)$, then

F is flat over $X \Leftrightarrow F$ is loc. free

Prop. Let X, Y sch. of fin. type/ \mathbb{K} . $f: X \rightarrow Y$ flat.

Let $y = f(x)$, $x \in X$. Then

$$\dim_X(X_y) = \dim_X X - \dim_Y Y$$

Example. $\varrho: \tilde{X} \rightarrow X$ blow-up of smooth subvar. on X smooth. Then ϱ is not flat.

Remark. The properties of irreducibility and reducedness are not preserved in flat families.

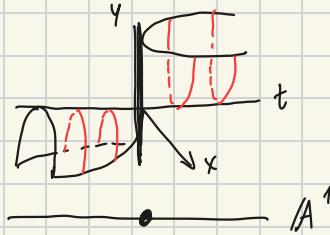
Note: Over PID, flat \leftrightarrow torsion-free

For example, consider the flat family

$$\text{Spec } k[x, y, t]/\langle ty - x^2 \rangle$$

$$f \downarrow \text{ (flat)}$$

$$\text{Spec } k[t]$$



We can see that $f^{-1}(0) \simeq \text{Spec } k[x, y]/\langle x^2 \rangle$, which is non-reduced. Also, in the family

$$\text{Spec } k[x, y, t]/\langle xy - t \rangle$$

we have that

$$f \downarrow \\ \text{Spec } k[t]$$

X_0 is irreduc. for $t \neq 0$

$X_0 \simeq X$ 2 components

§2. Hilbert polynomial

Let k be a field, X proj. scheme/ k , $\mathcal{O}_X(1)$ ample line bundle. Then,

$$m \mapsto \chi(X, \mathcal{O}_X(m))$$

is polynomial of degree $n = \dim X$, i.e., $\exists! P \in \mathbb{Q}[t]$ of $\deg P = \dim X$ s.t. $P(m) = \chi(X, \mathcal{O}_X(m)) \quad \forall m \in \mathbb{Z}$.

Remark. $\mathcal{O}_X(1)$ ample $\Rightarrow H^i(X, \mathcal{O}_X(m)) = 0 \quad \forall m > 0$, $\forall i > 0$, so for $m > 0$, $P(m) = H^0(X, \mathcal{O}_X(m))$.

We call P the Hilbert polynomial of X w.r.t. $\mathcal{O}_X(1)$.

Example. (1) $C \subseteq \mathbb{P}_k^n$ smooth curve of genus g and degree d , by RR theorem

$$h^0(C, \mathcal{O}_C(m)) = h^0(\mathcal{O}_C \otimes \mathcal{O}_C(-m)) + \deg(\mathcal{O}_C(m)) - g + 1$$

$$\text{For } m > 2g - 2 : h^0(C, \mathcal{O}_C(m)) = dm - g + 1$$

$$\rightarrow P(t) = dt - g + 1.$$

(2) $H_d \subseteq \mathbb{P}^n$ hypersurface

$$0 \rightarrow \mathcal{O}_{\mathbb{P}^n}(-H_d) \rightarrow \mathcal{O}_{\mathbb{P}^n} \rightarrow \mathcal{O}_{H_d} \rightarrow 0$$

$\simeq \mathcal{O}(-d)$

$$\rightarrow P(t) = \binom{t+d}{n} - \binom{t-d+n}{n}.$$

Theorem. Let T be an integral noeth. sch. $X \subseteq \mathbb{P}_T^n$ closed subscheme, P_t Hilbert pol. of $X_t \subseteq \mathbb{P}_{k(t)}^n$.

Then, X is flat over T iff P_t is independent of t .

Proof. We will prove the following :

(*) For any coherent sheaf F in $X = \mathbb{P}_T^n$, the Hilbert polynomial of $F_t := F|_{X_t}$ on $X_t = \mathbb{P}_{k(t)}^n$ is independent of t .

If we prove (*), we will obtain the result, since for $i : X \hookrightarrow \mathbb{P}_T^n$ closed embedding, we can take $F = i_* \mathcal{O}_X$, notice that

$$H^0(X, \mathcal{O}_X(m)) = H^0(\mathbb{P}_k^n, F(m))$$

$$\text{and also } P_{X_t}(m) = h^0(X_t, \mathcal{O}_{X_t}(m)) \text{ for } m \gg 0.$$

Thus, we can assume $X = \mathbb{P}_T^n$ and consider $\mathcal{F} \in \underline{\text{Coh}}(\mathbb{P}_T^n)$. Moreover, question is local on T , so we consider $T = \text{Spec}(A, \mathfrak{m})$ with A local noeth. ring.

We claim that the following assertions are equivalent:

(i) \mathcal{F} flat over T .

(ii) $H^0(X, \mathcal{F}(m))$ free A -mod of fin. rank $\nabla m \gg 0$.

(iii) P_t Hilbert pol. of X_t is indep. of t .

(i) \Rightarrow (ii) Čech coh.: $H^i(X, \mathcal{F}(m)) = H^i(\check{C}^0(U, \mathcal{F}(m)))$.

\mathcal{F} flat implies $C^i(U, \mathcal{F}(m))$ is a flat A -mod^(*)

and $H^i(X, \mathcal{F}(m)) = 0$ for $i > 0$, $m \gg 0$ (Surject's vanishing, Hartshorne, Thm. III.5.2). This means there is an exact sequence

$$0 \rightarrow H^0(X, \mathcal{F}(m)) \xrightarrow{\quad} \underbrace{C^0(U, \mathcal{F}(m))}_{\text{flat}} \rightarrow \dots \rightarrow \underbrace{C^n(U, \mathcal{F}(m))}_{\text{flat}} \rightarrow 0$$

coming is finite

Breaking into several s.e.s. we see that

$H^0(X, \mathcal{F}(m))$. Since $H^0(X, \mathcal{F}(m))$ is f.g. and flat

A -mod, is free of finite rank.

direct sum is flat

(ii) \Rightarrow (i) $S = A[x_0, \dots, x_n]$, $M = \bigoplus_{m \gg m_0} H^0(X, \mathcal{F}(m))$

with $m_0 \gg 0$ s.t. $H^0(X, \mathcal{F}(m))$ are free, then

$\mathcal{F} \simeq \tilde{M}$ and \mathcal{F} is flat over A .

(*) Use localization property.

(i) \Rightarrow (ii) We will prove that

$$P_f(m) = \text{rk } H^0(X, \mathcal{F}(m)) \text{ for } m \gg 0.$$

Take $t \in T$ corresponding to $p \in \text{Spec } A$, $T' = \text{Spec } A_p \rightarrow T$.

Consider the base change under $T' \rightarrow T$, we are reduced to the case in which $t \in T$ closed point.

Denote the fiber X_t by X_0 , \mathcal{F}_t by \mathcal{F}_0 and we have $\kappa(t) = \kappa$ (flatness is preserved under base change).

Take a presentation of κ over A :

$$A^{\oplus} \rightarrow A \rightarrow \kappa \rightarrow 0 \quad (\#)$$

Taking the associated sheaf and tensoring by \mathcal{F} we obtain

$$\mathcal{F}^{\oplus} \rightarrow \mathcal{F} \rightarrow \mathcal{F}_0 \rightarrow 0$$

$$\begin{aligned} & \xrightarrow{m \gg 0} H^0(X, \mathcal{F}(m)^{\oplus}) \rightarrow H^0(X, \mathcal{F}(m)) \rightarrow H^0(X_0, \mathcal{F}_0(m)) \rightarrow 0 \\ & \curvearrowleft \text{(Hartshorne Ex. III.5.10)} \end{aligned}$$

On the other hand, tensoring $(\#)$ by $H^0(X, \mathcal{F}(m))$, we obtain

$$H^0(X, \mathcal{F}(m))^{\oplus} \rightarrow H^0(X, \mathcal{F}(m)) \rightarrow H^0(X, \mathcal{F}(m)) \otimes_A \kappa \rightarrow 0$$

$$\rightsquigarrow H^0(X_0, \mathcal{F}_0(m)) \simeq H^0(X, \mathcal{F}(m)) \otimes_A \kappa \quad \forall m \gg 0$$

$$\rightsquigarrow \forall t \in T, H^0(X_t, \mathcal{F}_t(m)) \simeq H^0(X, \mathcal{F}(m)) \otimes_A \kappa \quad \forall m \gg 0$$

(iii) \Rightarrow (ii) Take $t \in T$ closed, $\eta \in T$ generic. Then, note that

$$\begin{aligned} H^0(X, \mathcal{F}(m)) \otimes_A \kappa & \simeq H^0(X_\eta, \mathcal{F}_\eta(m)) \simeq H^0(X_t, \mathcal{F}_t(m)) \\ & \simeq H^0(X, \mathcal{F}(m)) \otimes_A \kappa \end{aligned}$$

Thus, (iii) follows from the following lemma. \blacksquare

Lemma (Hartshorne II. 8.9). (A, \mathfrak{m}) noeth. local domain, $A/\mathfrak{m} \cong k$, $K = Fr(k)$. If M is $f.g.$ A -mod, $\dim_k(M \otimes_A k) = \dim_K(M \otimes_A K) = r$ $\Rightarrow M \cong A^r$.

Corollary. $\dim X_t = \deg P_t$, $P_n(X_t) = (-1)^n(P(0) - 1)$ and $\deg(X_t) = n! \cdot (\text{lead. coeff. of } P_t)$ are constant in flat families.

Theorem. Let $f: X \rightarrow Y$ be a proper morphism of sch./ k . Assume Y is regular, X is Cohen-Macaulay.

$$\dim X_y = \dim X - \dim Y \quad \forall y \Rightarrow f \text{ is flat.}$$

§ 3. Hilbert schemes

We would like to describe families of closed subschemes of a given scheme.

Theorem. Let k be a field, $Y \subseteq X = \mathbb{P}_k^n$ be a closed subscheme.

(a) $\exists H$ proj. scheme parametrizing closed subschemes of X with some Hilbert pol. P as Y , and $\exists W \subseteq X \times H$ a universal subscheme, flat over H s.t. the fibers of W over closed points of H are all closed subschemes of X with Hilbert pol. P .

Furthermore, H is universal: if T is any scheme, $W' \subseteq X \times T$ is a closed subscheme flat over T , whose fibers are closed subschemes of Y with Hilbert pol. P , then $\exists! T \rightarrow H$ s.t. $W' = W \times_H T$.

(b) If $y \in H$ corresponds to $y \subseteq X$,
 $T_y H \cong H^0(Y, \mathcal{N}_{Y/X})$, where $\mathcal{N}_{Y/X} \cong \text{Hom}(I_Y/I_Y^2, \mathcal{O}_Y)$
is the normal sheaf of y in X .

(c) If y is a l.c.i and $H^i(Y, \mathcal{N}_{Y/X}) = 0$,
 H is smooth at y of dim. $h^0(Y, \mathcal{N}_{Y/X})$.

(d) If y is l.c.i, $\dim_y H \geq h^0(Y, \mathcal{N}_{Y/X}) - h^1(Y, \mathcal{N}_{Y/X})$.

Idea of (a).

Subschemes of \mathbb{P}^n_k \hookrightarrow Subspaces of $k[x_0, \dots, x_n]$

(i) Replace RHS by finite-dim. Grassmannian.

(ii) Image is a subvariety.

Let's talk about (i). Take I_y the ideal
sheaf of $y \subseteq \mathbb{P}^n_k$, i.e.,

$$0 \rightarrow I_y \rightarrow \mathcal{O}_{\mathbb{P}^n} \rightarrow \mathcal{O}_y \rightarrow 0$$

Thm. $\forall P \in \mathbb{P}^n$, $\exists N(P) \in \mathbb{N}$ s.t. if $Y \subseteq \mathcal{O}_{\mathbb{P}^n}$
has Hilbert pol. P , then $\forall n \geq N(P)$

(a) $h^i(\mathbb{P}^n, I(n)) = 0 \quad \forall i \geq 1$

(b) $I(n)$ globally generated

(c) $H^0(\mathbb{P}^n, I(n)) \otimes H^0(\mathbb{P}^n, \mathcal{O}(1)) \rightarrow H^0(\mathbb{P}^n, I(n+1))$

Take $N = N(P)$, then $H^0(\mathbb{P}^n, I_y(N)) \subseteq H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(N))$
determines y , since (because of (b))

$$I_y(N) = \text{im}(\mathcal{O}_{\mathbb{P}^n} \otimes H^0(\mathbb{P}^n, I_y(N)) \hookrightarrow \mathcal{O}_{\mathbb{P}^n} \otimes H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(N)) \rightarrow \mathcal{O}_{\mathbb{P}^n}(N))$$

Thus, N work $\forall Y \subseteq \mathbb{P}^n$ with Hilbert pol. δ ,
so for $Q(N) = h^0(\mathbb{P}^n, \mathcal{I}_Y(N))$ there is an injective
map

$\{$ subschemes of \mathbb{P}^n with Hilbert pol. δ $\hookrightarrow \text{Gr}(Q(N), h^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(N))$

Examples. (1) $\text{Hilb}^1(X) \cong X$.

(2) $\text{Hilb}^p(X \times_S \mathbb{Z}/\mathbb{Z}) \cong \text{Hilb}^p(X/S) \times_S \mathbb{Z}$