Exercises (chapter. subchapter. exercise #).

 \Rightarrow II.2.1) If S is an arbitrary G set, thou $(ZS)_6\cong Z[SG]$.

· We know MG ≅ M & Z Par any G-wodele M. Theselore

-G Splits over \$\Omega\$ i.e. (MOM')_G \cong (MOM') & Z_G Z \cong M_G DM'_G.

We have that This splits as This of Gos;

So $(ZS)_6 \cong \bigoplus_{\text{Olbits}} (ZS_i)_6 \cong \bigoplus_{\text{Olbits}} Z$ Since every busis element in ZS_i is identified under $G \otimes ZS_i$.

Proposition 2.4) Let X be a free G-complex and let $Y:= \frac{x}{G}$. Then $C_*(x)_G \cong C_*(y)$

ZI.2.2.) Show we can relax free in the above.

The G-action on a Rae G-complex freely parameter the cells. So, the G action on $S:= \{n-cells of X\}$ is Rec. We then get an isomorphism of (7LS) a with $2\xi_n-cells$ of $Y\} \equiv \oplus 7L$ for each n.

of n-cell

The above thous the action need not be free, just a discrete action on a Sat.

Note that in the possit of App. 2.4. Le ruse a trick to pucke G is f n-cells? a permutation. $C_n(x)$ is generated by oxiented n-cells in X, but sine a orbit of n-cells is just a copy of G (by free autian), he can choose an orientation on this orbit of cells so that G cells by $G \mapsto G'$ for generators (n-cells) G, $G' \in C_n(X)$. In principle, it is possible that some $g \in G$ cells as $G \mapsto G'$, if we never to choose the orientation of G' in Such a very. In this case, there is more close than just a perhabition on the n-cells, so we can't use II. 2.1. directly.

Suppose that Gasting on an orbit of n-cells has a non-trivial stabiliser. i.e. $\exists g \in Stab(\sigma) \setminus \S1\S$. It g acted on σ such that on the boundary it has a degree -1 map $S^{n-1} \to S^{n-1}$, then g would be a non-trivial automorphism on the factor of Z corr to σ in $C_n(X)$ (the automorphism $1 \to -2$).

Observise, he have an action who's data on cells is just a permutation, so he was I.2.1.

A: If G is an aution which does not have cell inversions. i.e. if $(g: g^{n-1} \rightarrow g^{n-1}) = 1$, then peop 2.4 holds.

= I.2.3. If H4G and M a G-module.
a) & on I action of DMH. ie MH 15 a GH Module.

Define $G_H \ni gH \cdot m + I_H = gm + I_H$ where I_H is the ideal generated by $hm-m \mid \forall h \in H$, and H. ?

we have ght = Hhg = hgt because H 13 normal.

So
$$ghH \cdot (m+I_H) = hgH \cdot (m+I_H) = hgm - (hgm - gm) + I_H$$

= $gH \cdot (m+I_H)$

So, The certian is well defined. It is an aution by GOM being an aution.

b) Show MG ≅(MH)GH.

Elements of (MH)GH are (M+IH)+IGH Where IGH

is the ideal generated by $gH \cdot (M+I_H) - (M+I_H)^2$ where $gH \in \mathcal{G}_H$ and • is above. We have $gH \cdot (M+I_H) - (M+I_H) = (gM-M) + I_H$. So $I \cdot \mathcal{G}_H$ is generated by $M'+I_H$ where $M' \in \ker (M \to M_\Phi)$.

Therefore the map
$$m+I_G \longrightarrow (m+I_H)+I_{g_H}$$
 is

1) tell defined $(g_M-m+I_G \longmapsto \circ) \implies g_M+I_G \longmapsto \circ \simeq (g_{M},I_G)$.

2) An injection

It is clearly susjective.

 $= II.3.1$

Let $\{g_1,...,g_n\} \subseteq G$ all pairwise commute.

Let $2 := \sum_{M \in S} (-1)^{Sign(G)} [g_{G(G)}] ... |g_{G(G)}| \in Cn(G)$.

Let $z := \sum_{\sigma \in S_n} (-1)^{Sign(\sigma)} [g_{\sigma(\sigma)}] \dots [g_{\sigma(n)}] \in C_n(G)$. Show $\partial(z) = 0$ ($z = \alpha$ cycle).

$$\partial = \hat{\mathcal{J}}_{i}(E_{i})^{i} d_{i} \qquad \text{where} \qquad d_{i}[g_{i}]_{-i}[g_{n}] = \begin{cases} [g_{2}]_{\cdots}[g_{n}] & i = 0 \\ [g_{1}]_{\cdots}[g_{n}]_{-i}[g_{n}] & i = 0 \end{cases}$$

$$Ig_{1}[\dots]g_{n-1}] \qquad i = n.$$

let * \$ \{ g', ..., gn\}. Define [* | \pi, 1... | \pi_n] = [\pi, 1... | \pi_n] $[\alpha_i] \dots |\alpha_i| * |\alpha_{i+1}| \dots |\alpha_n] = [\alpha_i] \dots |\alpha_i \alpha_{i+1}| \dots |\alpha_n] \quad \text{and} \quad$

 $[\alpha_1|\dots|\alpha_n]*J=[\alpha_1|\dots|\alpha_{n-1}].$ Let $\{\hat{g}_0, \hat{g}_1, ..., \hat{g}_n\}$ be Such that $\hat{g}_0 = *$ 4 $\hat{g}_i = g_i$ for $1 \le i \le n$.

Then we observe d[gil...|gn] = & Sign(t) [ĝras, ĝras, ..., ĝras] where $J := \left\{ (0,1), (0,2), ..., (0,n) \right\} \leq \int_{n+1}$ "sym. gp. on $\Lambda+1$ letters".

So dz = Z Z Sign(T) Sign(V) [ĝto(o),..., ĝto(w]

$$= \sum_{\gamma \in \mathcal{J}_{m+1}} \operatorname{Sign}(\gamma) \left[\widehat{g}_{\gamma}(\omega), \ldots, \widehat{g}_{\gamma}(\alpha) \right]$$

Non suppose je Jnn is s.t. j(i) = 0 Then y':= (i-1, i+1)y is st. with orien. $[\hat{g}_{1}(0), \dots, \hat{g}_{1}(i-1), \hat{g}_{2}(i), \hat{g}_{1}(i+1), \dots, \hat{g}_{n}(n)] =$

$$\begin{bmatrix} \hat{g}_{\eta(0)}, \dots, \hat{g}_{\eta(i-1)}, \dots, \hat{g}_{\eta(i+1)}, \dots, \hat{g}_{\eta(n)} \end{bmatrix} =$$

$$\begin{bmatrix} \hat{g}_{\eta(0)}, \dots, \hat{g}_{\eta(i-1)} \hat{g}_{\eta(i+1)}, \dots \hat{g}_{\eta(n)} \end{bmatrix} =$$

$$\begin{bmatrix} \hat{g}_{\eta(0)}, \dots, \hat{g}_{\eta(i+1)} \hat{g}_{\eta(i+1)} \\ \dots, \hat{g}_{\eta(i+1)} \hat{g}_{\eta(i+1)} \end{bmatrix} =$$

$$\begin{bmatrix} \hat{g}_{\eta(0)}, \dots, \hat{g}_{\eta(i+1)} \\ \dots, \hat{g}_{\eta(i+1)} \hat{g}_{\eta(i+1)} \end{bmatrix} =$$

$$\begin{bmatrix} \hat{g}_{\eta(0)}, \dots, \hat{g}_{\eta(i+1)} \\ \dots, \hat{g}_{\eta(i+1)} \end{bmatrix} =$$

$$\begin{bmatrix} \hat{g}_{\eta(0)}, \dots, \hat{g}_{\eta(i+1)} \\ \dots, \hat{g}_{\eta(i+1)} \end{bmatrix} =$$

$$\begin{array}{lll} & & & & \\ &$$

$$[\hat{g}_{\eta'(0)}, \dots, \hat{g}_{\eta'(i-1)}, \hat{g}_{\eta'(i)}, \hat{g}_{\eta'(i+1)}, \dots \hat{g}_{\eta'(i)}]$$
.
 $[\hat{g}_{\eta'(0)}, \dots, \hat{g}_{\eta'(i-1)}, \hat{g}_{\eta'(i+1)}, \dots \hat{g}_{\eta'(i)}]$.

in the sum.

We find pairs of concelling terms doo when $\eta(0) = 0$ or $\eta(a) = 0$.

= I.4.1 Let Y be a path connected space. If Y has contractible universal cover X, with deck group G, Show $H_*(Y) \cong H_*(G)$.

X is the universal cover for Y and GOX freely. Consider the singular chain ca. $C^{\text{sin}}(X)$, where $C^{\text{sin}}(X)$ is generated by $\sigma^n: A^n \longrightarrow X$. There is a G-action $\sigma^n: A^n \to X$.

The Chair maps of $C^{Sig}(x)$ involve these ∂_i maps $\partial_i: (\Delta^n \to X) \to (\Delta^{n-1} \to X)$ $[v_i, \dots, v_{n-1}] \mapsto [v_i, \dots, v_{n-1}]$ $V \mapsto V \circ (\Delta^{n-1} \to A^n)$ position i

and the Grantian is compatible with these d: , i.e., of d: & = d; g.o. So, the Chig(x) are free ThG modules and since X & *, (8ig(x) is a free resolution of The over 26.

Then the neural argument...
As a 76-module, $C_n^{Sig}(X)$ is generated by G orbits ob n-simplices.

 $C_{N}^{Sing}(x) \cong \bigoplus_{\text{orbits}} \mathcal{K}_{G}. S_{n}\left(C_{N}^{Sing}(x)\right)_{G} \cong \bigoplus_{\text{orbits}} \mathcal{K}_{G}.$

The conering map $p: X \longrightarrow Y$ induces a map $P_{K}: C^{\text{sig}}(X) \longrightarrow C^{\text{sig}}(Y) \quad \forall^{n} \longmapsto p \bullet \forall^{n}.$

 $p_*: C^{sig}(x) \longrightarrow C^{sig}(y)$ $y_v \longmapsto p_v x_v$.

and $p_*(g, q_v) = p_v g_v x_v = p_*(y_v)$

So P* is a G-module resorption it regive Cony (4) The frivid action.

 $(p_*)_{\mathcal{G}}: (C^{\operatorname{sing}}(x))_{\mathcal{G}} \longrightarrow (C^{\operatorname{sing}}(Y))_{\mathcal{G}} = C^{\operatorname{sing}}(Y)$ is an iso if he compare buses. So $H_{*}(G) = H_{*}(C^{g}\Im(x)_{G}) = H_{*}(C^{g}\Im(y)) = H_{*}(Y).$ 7) Amadganated Poolucts. Analganation décigion e Grp. A $\frac{d_2}{d_1}$ G_2 G_3 G_4 G_5 G_7 G_8 G_8 injective. $G = G_1 * G_2$ $G = G_1 * G_2$ $G = G_2(a)$ $G = G_2(a)$ $G = G_1 * G_2$ $G = G_2 * G_2$ $G = G_1 * G_2$ $G = G_2 * G_2$ $G = G_1 * G_2$ Usually 2, 2 injective. So A is a subgroup of b. 4 Gz. Van-Kamper (for CW-complexes). All maps cellular, X=X, U, X2 Y <-> ×2 Then $\pi_i(x) = \pi_i(x_i) \star_{\pi_i(Y)} \pi_i(x_2)$ Wont to realise any (injective) analy anation diagram vice k(7,1)s ie. make all the above spaces K(T, T)s, with correct fundamental groups.

Lemma (1): It d, de injective =7 fi, fr injective. herma (2): het $i: X' \hookrightarrow X$ be an inclusion of Cu - complexes s+. $i_{*}: \pi_{i}(x') \longrightarrow \pi_{i}(x)$ is injective. Let $p: \hat{x} \rightarrow x$ be a universal cover of x, the each connected component of $p^{-}(x')$ is simply connected, i.e. is a universal cover for x'. Proof. Let X: be a concerted component of P'(x'). Then we have $\pi_{i}(\widetilde{x}_{i}') \xrightarrow{\dot{\gamma}_{k}} \pi_{i}(\widetilde{x})^{\ell}$ So ix up top honwropy lifting is also injective, J Px prop. => px is injective $So \pi(x) = 1.$ P* $\pi_{i}(x') \stackrel{i_{k}}{\longrightarrow} \pi_{i}(x)$ lemme: We can realise G, < A 2 62 K(T,1)s. i.e. I k (T,1)s. X, => Y => X2 mapping Cylinders lor di lor Air for Gi then "Add cells hilling higher homotopy". 100 Gi

Now we construct $X = X_1 \ V_4 \ X_2$. (as required) By Van-kompen $\mathcal{T}_{i}(x) = \mathcal{T}_{i}(x_{1}) \cup_{\mathcal{T}_{i}(x_{2})} \mathcal{T}_{i}(x_{2})$ het p: X->x be uni. cover. $TI_1(Y) \longrightarrow TI_1(X)$, so by lemma(2) $p^{-1}(Y)$ has conn. comp. which are uni covers for Y, Also, by len. (1) $\pi_i(x_i) \longrightarrow \pi_i(x)$, so similarly $\varphi^i(x_i)$ has conn. comp. m_i covers for x_i Choose con. componet so he have 3 Y CONEX mi j wiss j X, ~ X Since Y, X,, to are k(17,7)s we have $H_i(\widetilde{Y}) = H_i(\widetilde{X}_i) = 0$ for i70 MU 8eg. $-\rightarrow H_2(\widetilde{Y}) \longrightarrow H_2(\widetilde{X}_2) \oplus H_2(\widetilde{X}_1) \longrightarrow H_2(\widetilde{X}) \longrightarrow$ $G_{\mu, (\tilde{Y})} \longrightarrow \cdots$ \Rightarrow $H_i(\widetilde{x}) = 6$ for all 170 So X is a k(T,1) for G, *A GZ = T, (K) *T, (T) T, (K2) So applying MV to these K(11,1)s, we get a

a MU sagnence in group homology. ... \rightarrow $H_{\Lambda}(A) \rightarrow H_{\Lambda}(G_1) \oplus H_{\Lambda}(G_2) \rightarrow H_{\Lambda}(G) \rightarrow H_{\Lambda_1}(A) \rightarrow ...$ Hondogy 4 Chously 4 coefficients MORN is defined whenever MEMOde of NERMON Want $M \otimes (rs) n = M(rs) \otimes n$ = (mr)s on = mrosn = MBr(sn) = Mar(rs)n. if REQMON =>
me (rs)n = (rs)mon = r(sm)on = smorn = me(sr)n *

(MAN) Recall MRN is MOZN MOON = MOTON For group actions, we can avoid having to consider L/R readerless since any L GOM is also a R MFG by precouposing with the arti-automorphism $g \mapsto g^{-1}$ So if M, N we two left G-modules, he can make sense of MOZON (denoted MOGN). MOON is MON = MOON = MON (behave typo!). So MBON = (MON)o where GOMBN diagonally. So... Me, N = N e, M

We also define an artism of 6 on Hom (M,N) where $(gn)(m) := g \cdot u \cdot (g^{-1}m)$.

ASK GROUP ABOUT PRECEDING PARAGRAPH.

It gn=n (=7 g. u(g'm) = u(m) VneM tg $\Rightarrow u(g^{-1}m) = g^{-1}u(m) \Rightarrow u \in Hom_{\delta}(M,N).$

So $Hom_G(M,N) = Hom(M,N)^G \in denotes fixed points.$

(NOT necessarily execut!)

= Defining Hx (G,M) & H*(G,M).

Let F be a proj resolution of Zoner ZO. Ma 6-module. Define homology of coefficients in M

 $H_*(G,M) := H_*(F@_GM)$

Where FOOM looks like

... In 86 M Freich In. (86 M fr. oich)

FOOM con also be thought of as a tensor product of chair complexes where Mo

M= .. -0-0-0-1 N-00

But, this is old, seeing as f is a projective resolution of \mathcal{T} , and \mathcal{M} (so above) is just a chair cx. (over z What if we descended also a projective resolution of \mathcal{M}_{χ} i.e. some $\eta: P \rightarrow \mathcal{M}$ and $\alpha: f \rightarrow \mathbb{Z}$ and set H* (G, M) = H* (F @GP)

This is a equivalent debinition to H* (G,M) := H* (F@M) because Id on: FOOP -> FOOM is a neak egain. (Book uses For instead of Id=on) Also, 20 Ilp: FOGP -> ZOOP is a work equiv. H* (G,M) = H* (PG). can now compute Ho (G,M) F. -> Fo -> 2 -> 0 q h-exembres of _ BOM => F.OoM -> FOOM -> TLOOM -> O exact.

=> H. (G,M) = Mo

NB. He denotes honday of

FROM -> FORM -> 0 -> 0 (i.e. not reduced honology).