

Geom. Deap Learn. by Bronstein, Bruna, Cohen, Velickovic Cot. Deep Learn is an — Garanovic, Lessad, Dudrik, von Glehn Aralijo, Velickovic.

Geom. Deep Leanung

· One aim is to classify types of architecture.

· Have a better formal approach to creating suitable architectures

based on symmetries.
"signals" v space. e.g. screen: wxh pinels

e.g. a specific graph, a computer screen

vork pooling equiver invariant layer layer

Apparently: it's big in drug design & discovery.

CDL: generalise GDL.

GDL is based on group actions & not everything in life is a symmetry. What is a domain?

The central daim / observation: group actions on, say, sets are algebras for a certain monad (a

algebras for a certain monad (a group action monad) & equivariant maps between such sets-with-an-action are algebra homomorphisms.

What is a monad? E cat., it's an endofune. TE-E W/ n: Ide>T, M: ToT>T & there satisfy T ToToT IM TOT Algebras: An obj A & C along w/ a map &: T(A) -- A & t. A MA ST(A) TTA TO STA

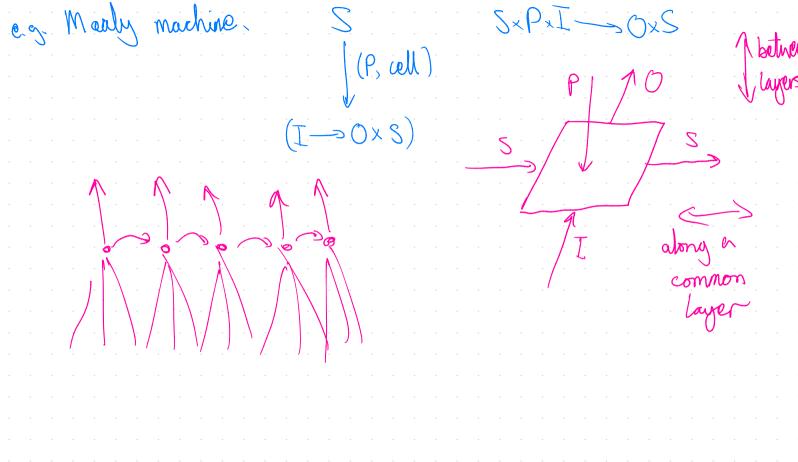
e.g. Pick a group G. We have a monad T: Set - Set sending S -> GxS (monad bc. GxGxS GxS) W:10]=>] algebras for this are a set S w/a map x: Gx5 -> S. 62=2) 0. (p.2) = (dy).2 C they are G-Sets. GXA-GXS TAMB al Bis an alg. hom. a triv action A B A - 1 - 2 - 2 - 3 R - 1 - 1 = f(g.n)==g-f(n)=f(n), eg RuxZh

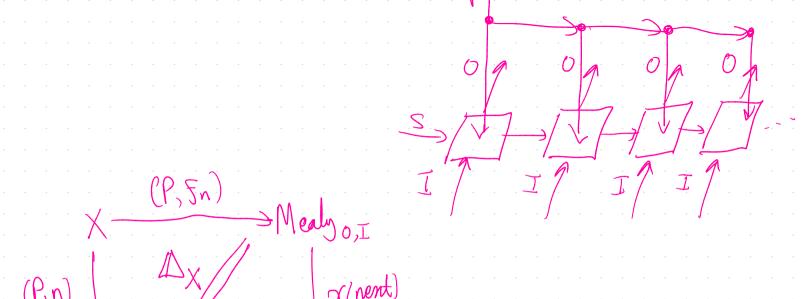
There's a more general notion of algebras & coalgebras. ANY endoquenter F.C. C has a notion: · of algebra a FA-sA. • of coalgebra B:A → FA. Fact These are actually also useful. e.g. Take F to be SI->1+AXS. 1+AxS Special ones initial algebra, terminal coalgebra. 1+ Ax List (A) Cist (A) |-> List (A) picks out the empty list

A× List (A) -> List (A) adjoins a new el.

e.g., automata Mealy machine

Mealy I,0


Show (I -> OxS)


inpute outpute

(I -> Ox Mealy I,0)

Idea. to do full arch design, need 2-categories They look at Para: · objes are sets · morphs are parametres functions A (P,F) B

2-morph s A B we reparametrisations r: P'->P Idea: Rather than have monads on Set, work in Para & hopefully ne can get alg. hom: Shat actually resemble known archs. 2 things: 1. You need 2-monads 2. Commutativity is complex comm. preudo-comm. lan opton/

n)
$$\int_{X} \int_{X} \int$$