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A very brief history by examples

Diophantus (c. 250AD) gave some of the earliest recorded
examples of algebraic methods to solve arithmetic problems.

Theorem (Fermat’s Last Theorem (conjectured 1637), Wiles 1994)

For any integer n ≥ 3, there are no non-trivial integer solutions to
an + bn = cn. Equivalently, there are no non-trivial rational
solutions to xn + yn = 1.

Theorem (Balakrishnan–Dogra–Müller–Tuitman–Vonk 2019)

The equation y4 + 5x4 − 6x2y2 + 6x3 + 26x2y + 10xy2 − 10y3 −
32x2 − 40xy + 24y2 + 32x − 16 = 0 has only 5 rational solutions,
(1, 1), (12 ,

1
2), (0, 0), (

−3
2 , 32), (0, 2).
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Why is this so hard? I

Theorem (Frye 1988)

The smallest integer solution to x4 + y4 + z4 = w4 is
(95800, 217519, 414560, 422481).

Theorem (Booker–Sutherland 2020)

The three smallest integer solutions to x3 + y3 + z3 = 3 are
(1, 1, 1), (4, 4,−5) and

(569936821221962380720,−569936821113563493509,

− 472715493453327032).
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Why is this so hard? II

Example

The positive integer solutions to y2 − 2x2 = 1 are
(2, 3), (12, 17), (70, 99), (408, 577), . . ..

Explicitly,
(
(3+2

√
2)n−(3−2

√
2)n√

2
, (3+2

√
2)n+(3−2

√
2)n

2

)
Example

Which right-angled triangles with rational side lengths have area 6?

(3, 4, 5),

(
7

10
,
120

7
,
1201

70

)
,

(
3404

1551
,
4653

851
,
7776485

1319901

)
, . . . .
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Why is this so hard? III

Theorem (Hilbert’s 10th Problem (1900), Matiyasevich (1970),
Robinson, Davis, Putnam)

Does there exist an algorithm to determine if a polynomial
equation has a solution in the integers? No!

Question

Does there exist an algorithm to determine if a polynomial
equation has a solution in the rationals?
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Degree 1 Curves

A general equation of degree 1 (in two variables) has the form
ax + by = c , a, b, c ∈ Q.
These equations have infinitely many solutions, one for each
(rational) value of x .
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Degree 2 Curves

A general degree 2 equation is a conic;
a1x

2 + a2xy + a3y
2 + a4x + a5y + a6 = 0, ai ∈ Q.
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Degree 2 Curves

If it has a rational solution, then there are infinitely many solutions
by projection from the rational point.

For example, x2 + y2 = 1, has a rational point at (0, 1). Write
y = tx + 1, then this is the same as x2 + t2x2 + 2tx + 1 = 1.
There are two solutions for each t, x = 0 or x = −2t

1+t2
. This gives

the paramterisation
(

−2t
1+t2

, 1−t2

1+t2

)
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Degree 2 Curves

Can you (easily) tell if such an equation has a point?

The equation x2 + 2y2 = −1 has no solutions as the lefthand side
is always positive.
y2 − 3x2 = 6x − 1 has no solutions, by considering values modulo
3.

Theorem (Hasse–Minkowski)

A degree 2 equation has rational solutions if and only if it has
solutions modulo p for every p, and real solutions.
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Degree 3 Curves

If a cubic curve has a rational point, O, the rational points form a
group (with identity O).

Theorem (Mordell–Weil)

The group of rational points is a finitely generated abelian group,
that is, isomorphic to Zr ⊕ T for some r ∈ Z≥0 and T a finite
abelian group.
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Degree 3 Curves

If a cubic curve has a rational point, O, the rational points form a
group (with identity O).

1 Let P,Q be rational points. Take the line through them, if
P ̸= Q, and the tangent line if P = Q.

2 Let R be the third point of intersection (counting
multiplicities).

3 Take the line through O and R. The third point of
intersection is P + Q.

Theorem (Mordell–Weil)

The group of rational points is a finitely generated abelian group,
that is, isomorphic to Zr ⊕ T for some r ∈ Z≥0 and T a finite
abelian group.
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Degree 3 Curves

Do reductions control the behaviour of degree 3 curves?

The curve 3x3 + 4y3 = 5 has solutions modulo every prime and
over R. But this curve has no rational points (Selmer 1951)!

Conjecture (Birch–Swinnerton-Dyer)

Fix a cubic curve C, with rational solutions forming a finitely
generated abelian group Zr ⊕ T. Let the number of solutions
modulo p be Np, then

∏
p≤x

Np

p ∼ log(x)r .

James Rawson Geometry Controls Arithmetic: Rational Points and Beyond
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Degree 4 Curves

Already seen two examples:

Fermat’s Last Theorem: x4 + y4 = 1 only has 4 solutions.
The curve y4 + 5x4 − 6x2y2 + 6x3 + 26x2y + 10xy2 − 10y3 −
32x2 − 40xy + 24y2 + 32x − 16 = 0 only has 5 solutions

For any a ∈ Z, the equation x4 − y4 = a has only finitely many
integer solutions, as x4 − y4 = (x2 − y2)(x2 + y2).

James Rawson Geometry Controls Arithmetic: Rational Points and Beyond



Motivation
Small Degree Curves

A Geometric Invariant
Low Degree Points
Further Directions

Degree 4 Curves

Already seen two examples:

Fermat’s Last Theorem: x4 + y4 = 1 only has 4 solutions.

The curve y4 + 5x4 − 6x2y2 + 6x3 + 26x2y + 10xy2 − 10y3 −
32x2 − 40xy + 24y2 + 32x − 16 = 0 only has 5 solutions

For any a ∈ Z, the equation x4 − y4 = a has only finitely many
integer solutions, as x4 − y4 = (x2 − y2)(x2 + y2).

James Rawson Geometry Controls Arithmetic: Rational Points and Beyond



Motivation
Small Degree Curves

A Geometric Invariant
Low Degree Points
Further Directions

Degree Is Not A Good Invariant

Changing variables does not preserve degree: substituting
y = z + x100 in y = x gives z = x − x100.

Some equations do not behave as expected, e.g.
y2 = x3 + x2, has solutions parameterised by y

x .

When there are more variables, things are not always as
expected. The equations y = x2, z = xy have solutions
parameterised by x , but a2 + b2 = c2, ab = 2× 6 can be
converted to v2 = u3 − 36u.
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Genus

Complex solutions to an equation come with a complex manifold
structure.

Complex curves (real surfaces) are parameterised by their genus (#
holes).
This can also be defined in terms of the dimension of the space of
differential forms.

Definition

The genus of an equation is the genus of the complex solution set.
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Genus Of Small Degree Curves

Degrees 1 and 2: the complex solutions are parameterised by
C. This compactifies to a sphere, so the genus is zero.

Degree 3: genus one. Can be transformed to y2 = f (x) with
f degree 3.

Degree 4: genus three.

Degree d : genus (d−1)(d−2)
2 .
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Theorem

A genus zero curve either has infinitely many solutions
(parameterised by Q), or no solutions. Moreover, this can be
checked efficiently.

Theorem (Mordell–Weil)

A genus one curve either has a rational solution (and the solutions
form a finitely generated abelian group), or no solutions.

Theorem (Faltings 1983)

A curve of genus at least 2 has only finitely many solutions (in Q).
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Limits To Rational Solutions

As rational points on high genus curves are finite, many very
different curves have the same rational points.

What if we allow more complicated solutions? For example, those
expressible in terms of

√
2? Or

√
−1? Or the real root of

x5 − x + 1?
The three theorems still hold! Solutions in “small” fields do not
see all of the curve.

James Rawson Geometry Controls Arithmetic: Rational Points and Beyond



Motivation
Small Degree Curves

A Geometric Invariant
Low Degree Points
Further Directions

Limits To Rational Solutions

As rational points on high genus curves are finite, many very
different curves have the same rational points.
What if we allow more complicated solutions? For example, those
expressible in terms of

√
2? Or

√
−1? Or the real root of

x5 − x + 1?

The three theorems still hold! Solutions in “small” fields do not
see all of the curve.

James Rawson Geometry Controls Arithmetic: Rational Points and Beyond



Motivation
Small Degree Curves

A Geometric Invariant
Low Degree Points
Further Directions

Limits To Rational Solutions

As rational points on high genus curves are finite, many very
different curves have the same rational points.
What if we allow more complicated solutions? For example, those
expressible in terms of

√
2? Or

√
−1? Or the real root of

x5 − x + 1?
The three theorems still hold! Solutions in “small” fields do not
see all of the curve.

James Rawson Geometry Controls Arithmetic: Rational Points and Beyond



Motivation
Small Degree Curves

A Geometric Invariant
Low Degree Points
Further Directions

Low Degree Points

Definition

A degree d solution to an equation is a solution whose values lie in
a degree d extension of Q – they can be expressed in terms of a
root of a degree d polynomial.

Degree 2 solutions are also called quadratic points, and can always
be expressed in terms of a square root.
Degree 3 solutions are also called cubic points. Some of them can
be expressed in terms of a cube root.
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Quadratic Points On Small Degree Curves

Degree 1 curves (lines) have infinitely many quadratic points

Degree 2 curves (conics) also have infintiely many quadratic
points

Degree 3 curves have infinitely many quadratic points, if they
have a rational point.

Degree 4 curves can have infinitely many quadratic points,
e.g. y4 = x3 − 36x .

Degree 5 curves have only finitely many quadratic points.
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Degree 3 curves have infinitely many quadratic points, if they
have a rational point.

Degree 4 curves can have infinitely many quadratic points,
e.g. y4 = x3 − 36x .

Degree 5 curves have only finitely many quadratic points.
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Genus Is Not Enough

Example

For a (squarefree) degree d polynomial, f , the curve y2 = f (x) has
genus ⌈d2 ⌉ − 1.

But it always has infinitely many quadratic points.

Example

For any integer n, the pair of equations y2 = x3 − 36x ,
z2 = xny − 1, define a genus n + 3 curve. But it still has infinitely
many quadratic points.
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Geometry Controls Arithmetic Again

Theorem (Harris–Silverman 1991)

If an equation has infinitely many quadratic points, then the
associated Riemann surface is a double cover of a sphere (P1) or a
torus (an elliptic curve).

Theorem (Kadets–Vogt 2025)

If an equation of genus g ≳ d2

2 has infinitely many degree d points,
then the associated Riemann surface has a degree d ′ map to a
Riemann surface whose equation has infinitely many degree e
solutions, where d = ed ′.
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Plane Curves

Theorem (Debarre–Klassen 1994)

Let d ≥ 7, then a degree d equation has only finitely many
solutions of degree at most d − 2.

Example

The Fermat equation, xn + yn = 1, has only finitely many degree
≤ n − 2 solutions, for any n ≥ 7.
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Plane Curves

Theorem (Debarre–Klassen 1994)

Let d ≥ 7, then a degree d equation has only finitely many
solutions of degree at most d − 2.

Example

The Fermat equation, xn + yn = 1, has only finitely many degree
≤ n − 2 solutions, for any n ≥ 7.
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Directions of Current Research

Classify the curves with infinitely many degree d points below
the genus threshold.

Which curves have infinitely many cubic points that can be
expressed in terms of cube roots? What about in higher
degrees?

What if the complex solutions describe a complex surface
(real 4-fold)?

How do degree d solutions behave under mappings?

For “interesting” equations, can you describe all of their
degree d points?
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Thank you! Any Questions?
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