Open Associativity Equations and ADE Singularities

Alessandro Proserpio

AGQ Student Conference

5th November 2025

$$f:(\mathbb{C}^n,0)\longrightarrow(\mathbb{C},0)$$

germ of function

w/ critical pt at 0

$$f:(\mathbb{C}^n,0)\longrightarrow (\mathbb{C},0)$$
 germ of function \mathbb{A}^n w/ critical pt at 0 .

The algebraic variety $\mathbb{V}(f):=\{\underline{z}\in\mathbb{C}^n:\ f(\underline{z})=0\}$ is singular at 0 .

$$f:(\mathbb{C}^n,0)\longrightarrow(\mathbb{C},0)$$
 germ of function \mathbb{C}^n \mathbb{C}^n \mathbb{C}^n \mathbb{C}^n \mathbb{C}^n \mathbb{C}^n \mathbb{C}^n germ of function \mathbb{C}^n \mathbb{C}^n

w/ critical pt at 0

Simple surface singularities were classified by ARNOLD

- A_1, A_2, A_3, \dots
- D4, D5, D6, ...
- E: E6, E7, E8

$$f:(\mathbb{C}^n,0)\longrightarrow(\mathbb{C},0)$$

germ of function

w/ critical pt at 0

Simple surface singularities were classified by ARNOWD

- A: A1, A2, A3, ...
- D: D4, D5, D6, ...
- E: E6, E7, E8

e.g. singularity of type De:

 $f(2,w) = 2^{l-1} + 2w^2$.

A DEFORMATION / UNFOLDING is a germ

$$F: (\mathbb{C}^2 \times \mathbb{C}^2, 0) \longrightarrow (\mathbb{C}, 0)$$

$$W/F|_{\mathbb{C}^2\times\{0\}}=1.$$

A DEFORMATION / UNFOLDING is a germ

F:
$$(\mathbb{C}^2 \times \mathbb{C}^2, 0) \longrightarrow (\mathbb{C}, 0)$$

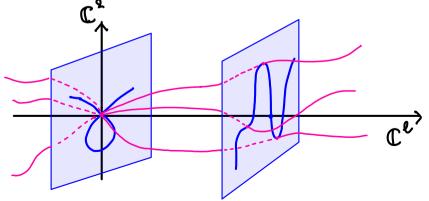
PARAMETER $\longrightarrow \mathbb{C}^2 \times \{0\} = 1$.

We denote (z, w, a) ∈ C²×Ce, Fa:= F|C²×{aj.

A DEFORMATION / UNFOLDING is a germ

$$F: (\mathbb{C}^2 \times \mathbb{C}^2, 0) \longrightarrow (\mathbb{C}, 0)$$

We denote
$$(2, w, a) \in \mathbb{C}^2 \times \mathbb{C}^2$$
, $F_a := F|_{\mathbb{C}^2 \times \{a\}}$.



CRITICAL SPACE

$$Cr(F) := V(J(F))$$

$$(\frac{\partial F}{\partial F}, \frac{\partial F}{\partial W}) \text{ IDEAL}$$

KODAIRA - SPENCER MAP

$$TC^{e} \longrightarrow C[z, w, \alpha] / J(F)$$

$$\frac{\partial f}{\partial a_{\mu}} \mapsto \frac{\partial F}{\partial a_{\mu}} + J(F)$$

JACOBIAN RING

KODAIRA - SPENCER MAP

$$TC^{\ell} \longrightarrow C[z,w,\underline{a}] / J(F)$$

$$\frac{\partial F}{\partial a_{\mu}} \mapsto \frac{\partial F}{\partial a_{\mu}} + J(F)$$

KODAIRA - SPENCER MAP

$$TC^{e} \longrightarrow C[z,w,a]$$

$$J(F)$$

F is UNIVERSAL if any other deformation can be obtained from it by a morphism.

F is MINIVERSAL if it is universal and l is minimal.

KODAIRA - SPENCER MAP

$$TC^{\ell} \longrightarrow C[z,w,\underline{\alpha}]$$

$$J(F)$$

$$\partial_{\alpha\mu} \mapsto \frac{\partial F}{\partial \alpha\mu}|_{C(F)}$$

F is MINIVERSAL if it is universal and l is minimal.

THM F MINIVERSAL
$$\iff$$
 TO $\mathbb{C}^{\ell} \xrightarrow{\sim} \mathbb{C}^{[2,w]}/J(p)$

So: for a given basis $\phi_1, \ldots, \phi_\ell$ of C[z,w]/J(f)

$$F(z,w,\underline{a}) = f(z,w) + \alpha_1 \phi_1(z,w) + \cdots + \alpha_e \phi_e(z,w)$$

is a miniversal deformation.

Motive that
$$\phi_{\mu} = \frac{\partial F}{\partial a_{\mu}}$$
.

$$f(z, w) = z^{\ell-1} + zw^2$$

Hence, a miniversal deformation is given by:

If F is miniversal, the Kodaira-Spencer map gives an isomorphism of V.S. at each pt in C^e:

isomorphism of V.S. at each pt in
$$C^{\ell}$$
:

$$T_{\underline{a}}C^{\ell} \xrightarrow{\sim} C[z,w] \int_{C^{2}\times\{\underline{a}\}} F_{\underline{a}} := F|_{C^{2}\times\{\underline{a}\}}.$$

RMK If F is miniversal, the Kodaira-Spencer map gives an isomorphism of V.S. at each pt in Cl:

$$T_{\underline{a}}C^{\ell} \xrightarrow{\sim} C[z,w] J(F_{\underline{a}})$$

TOEA ENDOW TO W/ A MUTIPU CATION by requiring that these maps be isomo-phisms of rings.

FROBENIUS MANIFOLD

That is, a complex manifold M equipped w/

- 1 a commutative, associative product
 - $o: \mathfrak{X}_{\mathsf{M}} \otimes_{\mathcal{O}_{\mathsf{M}}} \mathfrak{X}_{\mathsf{M}} \longrightarrow \mathfrak{X}_{\mathsf{M}}$

- 2 a symm., non-deg. bilinear form
- 3) two distinguished holomorphic V.F.
- e, E ∈ Xm(M).

satisfying compatibility conditions.

A FROBENIUS MANIFOLD a complex manifold M equipped w/

1 a commutative, associative product

 $o: \mathfrak{X}_{\mathsf{M}} \otimes_{\mathcal{O}_{\mathsf{M}}} \mathfrak{X}_{\mathsf{M}} \longrightarrow \mathfrak{X}_{\mathsf{M}}$

- 2 a symm., non-deg. bilinear form
- $\eta: \mathcal{X}_{\mathsf{M}} \otimes_{\mathcal{O}_{\mathsf{M}}} \mathcal{X}_{\mathsf{M}} \longrightarrow \mathcal{O}_{\mathsf{M}}$

- (3) two distinguished holomorphic V.F.
- e, E ∈ Xm(M).

satisfying compatibility conditions, including flatness and 0-compatibility of η , $\gamma(x,y,z)=\gamma(y,x,z)$ e being the IDENTITY of 0.

THM The bilinear form on TCl:

is flat, non-degenerate and compatible with o.

THM

The bilinear form on TCl:

(Saito)

$$\left(\frac{\partial}{\partial a_{\mu}}, \frac{\partial}{\partial a_{\nu}} \right) := \sum_{x \in Gr(P)} \operatorname{Res}_{x} \left\{ \frac{\partial F}{\partial a_{\mu}} \frac{\partial F}{\partial a_{\nu}} \frac{\partial z \wedge dw}{F_{z} F_{\nu}} \right\}$$

is flat, non-degenerate and compatible with o.

GROTHENDIECK'S
RESIDUES

E (EULER V.F.) gives "homogeneity" of the structure.

For ADE singularities:

I! grading of C[z,w] making f homogeneous of degree ?.

Ae: $h = \ell + 1$, De: $h = 2(\ell - i)$, Eo: h = 12, Ea: h = 18, Es: h = 30.

E (EULER V.F.) gives "homogeneity" of the structure.

For ADE singularities:

 $\exists!$ grading of C[2,W] making f homogeneous of degree \mathbb{R} .

This extends uniquely to a grading of $C[z,w,\underline{a}]$ making the deformation homogeneous of degree R.

$$E := \frac{1}{h} \sum_{\mu=1}^{\ell} (\deg a_{\mu}) a_{\mu} \frac{\partial}{\partial a_{\mu}}$$

e.g. for a singularity of type De:

$$f(3,\omega) = 2^{\ell-1} + 2\omega^2 \in \mathbb{C}[3,\omega]$$
 , $R = 2(\ell-1)$.

$$\Rightarrow$$
 deg $z = 2$, deg $w = 2(\ell-2)$.

(1)

ISOLATED SURFACE SINGULARITIES

e.g. for a singularity of type De:

$$f(3,\omega) = 2^{\ell-1} + 2\omega^2 \in \mathbb{C}[3,\omega]$$
 , $R = 2(\ell-1)$.

$$\Rightarrow$$
 deg $z = 2$, deg $w = \ell - 2$.

$$F(z, w) = z^{\ell-1} + zw^2 + \alpha_1 z^{\ell-2} + \cdots + \alpha_{\ell-1} + \alpha_\ell w \in \mathbb{C}(z, w, \underline{\alpha})$$

 $\deg \alpha_1 = 2, \deg \alpha_2 = 4, \ldots, \deg \alpha_{\ell-1} = 2(\ell-1), \deg \alpha_\ell = \ell$

$$E = \frac{1}{\ell-1} \sum_{\mu=1}^{\ell-1} \mu \alpha_{\mu} \frac{\partial}{\partial \alpha_{\mu}} + \frac{\ell}{2(\ell-1)} \alpha_{\ell} \frac{\partial}{\partial \alpha_{\ell}}.$$

1) ISOLATED

SURFACE

SINGULARITIES

Associated to any Frobenius manifold there is a solution \$\bar{\textstyle{1}}\$ to the WITTEN-DIJKGRAAF-VERLINDE-VERLINDE EQUATIONS. (WDVV)

PREPOTENTIAL or FREE ENERGY Associated to any Frobenius manifold there is a solution to the WITTEN-DIJKGRAAF-VERLINDE-VERLINDE EQUATIONS.

(WDVV)

In a system of FLAT COORDINATES $t_1, ..., t_\ell$ for η $\eta\left(\frac{\partial}{\partial t_{\mu}}, \frac{\partial}{\partial t_{\nu}}\right) \in \mathbb{C}$

Associated to any Frobenius manifold there is a solution of to the WITTEN-DIJKGRAPE-VERLINDE-VERLINDE EQUATIONS.

(WDVV)

In a system of FLAT COORDINATES
$$t_1, ..., t_e$$
 for η :
$$\frac{\partial}{\partial t_{\mu}} \circ \frac{\partial}{\partial t_{\nu}} = \sum_{\alpha=1}^{e} C_{\mu\nu}^{\alpha} \frac{\partial}{\partial t_{\alpha}} \longrightarrow \frac{\partial^{3}\overline{\phi}}{\partial t_{\mu}\partial t_{\nu}\partial t_{\rho}} := \sum_{\alpha=1}^{e} \eta_{\rho\alpha} C_{\mu\nu}^{\alpha}$$

O ASSOCIATIVE (=>) \$ SOLVES WOW EQUATIONS

O ASSOCIATIVE (=) \$\overline{Q}\$ Solves wow EQUATIONS

Homogeneity of the structure $\iff \Phi$ is homogeneous.

FOR ADE SINGULARITIES:

One can find flat coordinates so that C[t] = C[a] and degty = degay

 $\overline{\Phi}(\underline{t}) \in \mathbb{C}[\underline{t}]$

homogeneous of degree 2(R+1).

Constructions of Frobenius manifolds generalising ADE singularities.

An LG-MODEL is a pair (2, w)

Constructions of Frobenius manifolds generalising ADE singularities.

An LG-MODEL is a pair (2,w)

1) It is a family of meromorphic functions on a Riemann surface of fixed genus 9 w/ prescribed pole structure.

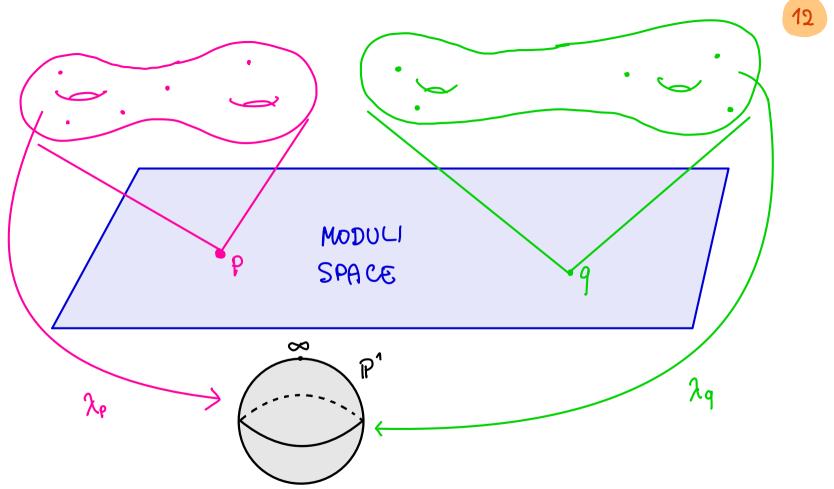
JLG SUPERPOTENTIAL

Constructions of Frobenius manifolds generalising Saito theory.

An LG-MODEL is a pair (2, w)

- (1) λ is a family of meromorphic functions on a Riemann surface of fixed genus $\frac{9}{9}$ w/ prescribed pole structure.
- ② w is a family of meromorphic differentials on the sauce curve, satisfying some admissibility conditions.

PRIMARY DIFFERENTIAL/FORM



The metric and multiplication are defined by:

$$\eta(X,Y) := \sum_{x \in G(\lambda)} \operatorname{Res}_{x} \left\{ X(\lambda) Y(\lambda) \frac{\omega^{2}}{d\lambda} \right\}.$$

$$c(X,Y,Z) := \sum_{x \in G(X)} Res_{x} \left\{ X(X) Y(X) Z(X) \frac{\omega^{2}}{dX} \right\}$$

$$= V(X \circ Y, Z).$$

e.g. LG MODEC for ADE singularities:

What matters are the critical points: $\begin{cases} f_{w}=0 \end{cases}$

e.g. LG MODEC for ADE singularities:

What matters are the critical points: $\begin{cases} F_z = 0 \\ F_w = 0 \end{cases}$

$$C_F(\underline{\alpha}) := \{(z,w) \in \mathbb{C}^2 : F_w(z,w,\underline{\alpha}) = 0\}$$

This defines $C_F \hookrightarrow \mathbb{C}^2 \times \mathbb{C}^{\ell}$.

let
$$\lambda := F|_{C_F}$$

Let $\lambda := F|_{C_F}$ so that $\lambda_2 = F_2$ on C_F .

2

LANDAU-GINZBURG MODELS

e.g. SINGULARITY OF TYPE D:

LANDAU-GINZBURG MODELS

e.g. SINGULARITY OF TYPE De:

$$\chi(z) = z^{\ell-1} + a_1 z^{\ell-2} + \cdots + a_{\ell-1} - \frac{1}{47} a_{\ell}^2$$

FAMILY OF MEROMORPHIC FUNCTIONS ON P1 W POLES AT 00 AND O.

3 FLAT F-MANIFOLDS

That is a complex manifold M equipped w/

- 1) an associative, commutative product 0: XH OCH XH -> XH.
- 2) a flat affine connection ∇ .
- 3) a global identity V. F. e ∈ Xn (M).

satisfying compatibility conditions.

3 FLAT F-MANIFOLDS

That is a complex manifold M equipped w/

- 1) an associative, commutative product 0: In Son In > In.
- 2) a flat affine connection ∇ .
- 3) a global identity $e \in \mathcal{X}_{M}(M)$.

satisfying compatibility conditions.

A VECTOR (PRE) POTENTIAL $\Phi \in \mathcal{X}_{M}(\mathcal{U})$ can still be defined locally so that, in flat coordinates $t_1,...,t_n$ for ∇ :

$$\frac{\partial}{\partial t_{\mu}} \circ \frac{\partial}{\partial t_{\nu}} = \sum_{\alpha=1}^{\infty} C_{\alpha}^{\alpha} \frac{\partial}{\partial t_{\alpha}} \longrightarrow$$

 $\frac{\partial^2 \Phi_{\alpha}}{\partial t_{\mu} \partial t_{\nu}} := C^{\alpha}_{\mu\nu}$

FLAT F-HANIFOLDS

A VECTOR (PRE) POTENTIAL $\Phi \in \mathcal{X}_{\mathsf{M}}(\mathcal{U})$ can still be defined bacally so that, in flat coordinates t1,..., tn for ♥:

$$\frac{\partial}{\partial t_{\mu}} \circ \frac{\partial}{\partial t_{\nu}} = \sum_{\alpha=1}^{\infty} C_{\mu\nu}^{\alpha} \frac{\partial}{\partial t_{\alpha}} \longrightarrow$$

$$\frac{\partial^2 \overline{\Phi}_{\alpha}}{\partial t_{\mu} \partial t_{\nu}} := C^{\alpha}_{\mu\nu}$$

EQUATIONS

3 FLAT F-MANIFOLDS

A VECTOR (PRE) POTENTIAL $\Phi \in \mathcal{X}_{\mathsf{M}}(\mathcal{U})$ can still be defined bacally so that, in flat coordinates $\mathsf{t}_1,...,\mathsf{t}_n$ for ∇ :

$$\frac{\partial f^{\dagger}}{\partial t^{\dagger}} \circ \frac{\partial f^{\dagger}}{\partial t^{\dagger}} = \sum_{\alpha=1}^{\infty} C_{\alpha}^{\lambda m} \frac{\partial f^{\alpha}}{\partial t^{\alpha}} \longrightarrow \frac{\partial f^{\alpha}}{\partial t^{\alpha}} := C_{\alpha}^{\lambda m}$$

RMK If M is a Frobenius manifold with prepotential Φ , then it is an fleet F-manifold with vector potential $\nabla \Phi$.

(3) ALMOST-FLAT F-MANIFOLDS

An EXTENSION of a Frobenius manifold M is a flat F-manifold M with a fibration $7L:M\longrightarrow M$ such that:

- 1 $T_{*p}: T_{p}\widetilde{M} \longrightarrow T_{T(p)}M$ is a ring-homomorphism.

(3) ALMOST-FLAT F-HANIFOLDS

An EXTENSION of a Frobenius manifold M is a flat F-manifold M with a fibration $7i:M \longrightarrow M$ such that:

- 1 T*p: TpM → TTCP) M is a hornomorphism of C-algebras.
- $\boxed{2} \quad \widetilde{\nabla}|_{\pi^*TM} = \pi^*\nabla.$

RMK KerTi*p is an ideal in TpM Yp.

3 ALMOST-FLAT F-HANIFOLDS

An EXTENSION of a Frobenius manifold M is a flat F-manifold M with a fibration $\pi: M \longrightarrow M$ such that:

- 1 T*p: TpM→ TrapM is a homomorphism of C-algebras.
- $\boxed{2} \quad \overrightarrow{\nabla} |_{\pi^* TM} = \pi^* \nabla.$

RMK KerTi*p is an ideal in TpM Yp.

RMK Flat sections of ∇ lift to flat sections of ∇ .

=) Flat coordinates $t_1, ..., t_n$ on M can be completed to flat coordinates $t_1, ..., t_n, x_1, ..., x_r$ on M.

The vector potential Φ on \widetilde{M} can be chosen so that:

ALMOST-FLAT F-MANIFOLDS

The vector potential Φ on \widetilde{M} can be chosen so that:

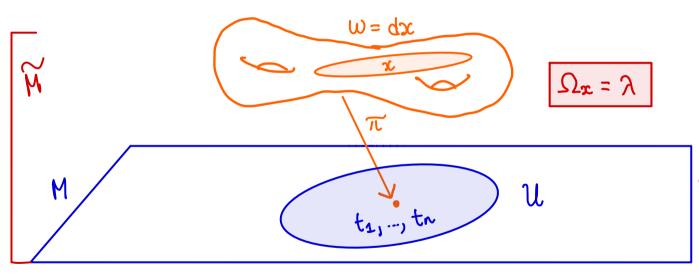
$$\widetilde{\mathsf{o}}$$
 associative \Longleftrightarrow Ω solves the $\frac{\mathsf{open}}{\mathsf{equations}}$

(3)

(Almeida '25)

THM

If a Frobenius manifold admits an LG-model, then it has a unique rank-one extension such that:



- 3 ALMOST-FLAT F-MANIFOLDS
- e.g. singularity of type De:

$$\lambda(x) = \frac{1}{2^{\ell-1}} x^{2(\ell-1)} + \frac{1}{2^{\ell-2}} a_1 x^{2(\ell-2)} + \cdots + a_{\ell-1} - \frac{1}{2x^2} a_{\ell}^2, \quad \omega = dx.$$

Given a system of flat coordinates $t_1, ..., t_e$ for the ADE Frobenius manifold, $t_1, ..., t_n, \infty$ is a system of flat coordinates for the extension and:

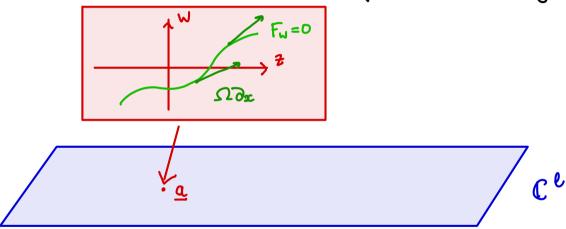
$$\Omega(\pm,x) = \frac{1}{2^{\ell-1}(2\ell-1)} x^{2\ell-1} + \frac{1}{2^{\ell-2}(2\ell-3)} a_1(\pm) x^{2\ell-3} + \cdots + a_{\ell-1}(\pm) x + \frac{1}{2x} a_{\ell}(\pm)^2 + k(\pm)$$

CONSTANT OF INTEGRATION Computed to be zero by Basalev and Buryak (2012).

4 RANK-TWO EXTENSIONS

Reason why we expect rank-two extensions in the ADE singularity cases:

the LG-model is a restriction of a polynomial to an algebraic curve in \mathbb{C}^2

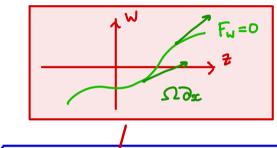


(4) RA

RANK-TWO EXTENSIONS

Reasons why we expect rank-two extensions in the ADE singularity cases:

th LG-model is a restriction of a polynomial to an algebraic curve in \mathbb{C}^2



Does there exist $\chi \partial_z + \Psi \partial_w$ such that $(\chi \partial_z + \Psi \partial_w)|_{C_z} = \Omega \partial_\infty$?

CONTECTURE

The structures on the parameter spaces \mathbb{C}^{ℓ} of deformations of ADE singularities admit a unique POLYNOHIAL rank-two extension to $\mathbb{C}^2 \times \mathbb{C}^{\ell}$ which

- a is homogeneous w.r.t. the induced grading on C[z,w,a].
- b restricts to the Known rank-one extension on a suitable algebraic curve in \mathbb{C}^2 .

Thank you for your attention!