## INTERMEDIATE CAT THEORY

### JACK HEANEY

### 1. Recap Lecture

- 1.1. Chapter 1. Skipping basic definitions see Chapter 1 of Context.
- 1.2. Chapter 2. Starting with the Yoneda Lemma.

Paraphrase

"If we want to understand a particular object in a category by understanding its relationship to all other objects"

Understanding representable functors first

Let  $\mathbb{C}$  be a locally small category (recall: that the class of all morphisms between pairs of objects are sets)

Let  $F: \mathbb{C} \longrightarrow \mathbb{S}$ et be a (covariant) functor if there is exists a  $c \in \mathbb{C}$  such that

$$\mathbb{C}(c,-)\cong F$$

we say F is a representable functor.

Let  $F: \mathbb{C}^{op} \longrightarrow \mathbb{S}et$  be a (contravariant) functor if there exists a  $c \in \mathbb{C}$ 

$$\mathbb{C}(-,c)\cong F$$

we also say F is a representable functor.

Examples:

- Let  $1 : \mathbb{S}et \longrightarrow \mathbb{S}et$  be the identity functor, is representable by the singleton set  $\{*\}$ ,  $\mathbb{S}et(\{*\}, -)$ .
- Let  $\mathcal{P}: \mathbb{S}et^{\mathrm{op}} \longrightarrow \mathbb{S}et$  be the contravariant power set functor. This functor is representable by the 2 element set  $\{0,1\}$ ,  $\mathbb{S}et(-,\{0,1\})$ .
- Let  $U: \mathbb{G}rp \longrightarrow \mathbb{S}et$  be the forgetful functor, this is represented by  $\mathbb{Z}$  i.e.  $\mathbb{G}rp(\mathbb{Z},-)$ .
- $\Delta_{\emptyset}$ : Set<sup>op</sup>  $\longrightarrow$  Set the constant functor that sends all sets to the empty set is not representable. Exercise: Hint: Try to represent it and use that  $\emptyset$  is the initial object in Set.

The Yoneda Lemma proper:

Let  $\mathbb C$  be a locally small category, then for a functor  $F:\mathbb C\longrightarrow\mathbb Set$  we have

$$[\mathbb{C},\mathbb{S}et](\mathbb{C}(c,-),F)\cong Fc$$

natural in F and c. The contravariant version:

$$[\mathbb{C}^{\mathrm{op}}, \mathbb{S}\mathrm{et}](\mathbb{C}(-, c), \mathsf{F}) \cong \mathsf{F}c$$

again natural in F and c.

Lets apply this immediately, to  $\mathcal{P}: \mathbb{S}et^{\mathrm{op}} \longrightarrow \mathbb{S}et$ , we know that  $\mathcal{P} \cong \mathbb{S}et(,\{0,1\})$ .

$$[Set^{op}, Set](Set(\{0,1\}), \mathcal{P}) \cong \mathcal{P}(\{0,1\})$$

Recall that  $\mathcal{P}(\{0,1\})$  is a 4 element set  $\{\emptyset,\{0\},\{1\},\{0,1\}\}$ .

Date: October 8, 2025.



FIGURE 1. A Cone

Jump ahead to the Yoneda Embedding:

 $\mathbb{C}(c,-):\mathbb{C}\longrightarrow\mathbb{S}et$ , consider (you can use the katakana 'yo' symbol)

$$\mathbb{C}^{\mathrm{op}} \longrightarrow [\mathbb{C}, \mathbb{S}\mathrm{et}]$$

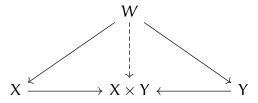
$$c\mapsto \mathbb{C}(c,-)$$

a contravariant embedding meaning that it is full and faithful. The functor  $\mathbb{C}(-,c)$ :  $\mathbb{C}^{\mathrm{op}} \longrightarrow \mathbb{S}et$ . The Covariant embedding is then

$$\mathbb{C} \longrightarrow [\mathbb{C}^{\mathrm{op}}, \mathbb{S}\mathrm{et}]$$

$$c \mapsto \mathbb{C}(-,c)$$

## 1.3. Chapter 3. Limits and Colimits



Again let  $\mathbb{C}$  be locally small, and let  $F: \mathcal{I} \longrightarrow \mathbb{C}$  we need

In the figure we use the  $\mathfrak u$  to be the zenith of our cone and the white arrows to be the diagram, the image of F in  $\mathbb C$ .

Jumping back to beginning of limits and colimits. We view limits as representing objects of the functor Cone(-, F) cones with diagram F, and Cocone(F, -). See figure 1.

More about products, the limits out of the discrete two object category is a product. Coproducts are colimits out of the same category.

Pullbacks are limits out of the "universal cospan category". Pushouts are colimits out of the "universal span category".

Exercises:

• What is the coproduct of two sets? Think sum

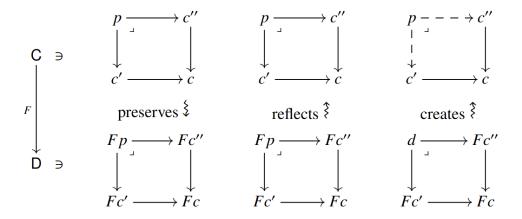


Figure 2. Cospan in  $\mathbb{C}: c' \longrightarrow c \longleftarrow c''$ 

- What is the product of two groups? Don't think
- What is the coproduct of two groups? Think is the coproduct of underlying sets 'big enough' to be a group?
- What is a pullback in Set? Think kernel pair
- What is the limit of a diagram of this shape in Grp:

$$X \xrightarrow{f} Y$$

Group structure on this is easy to write down? Bonus: Write this down.

Question (Steven): Is it not strange to just write down X + Y a sum of two sets if any other set would also be a coproduct? Answer: Actually we have extra data that is suppressed, the coproduct is the unique cocone but we are usually considering just the nadir of the cocone.

## 1.4. Some quick ideas on special functors.

$$\mathbb{J} \xrightarrow{F} \mathbb{C} \xrightarrow{G} \mathbb{D}$$

Consider also  $\mathsf{H}: \mathcal{I} \longrightarrow \mathbb{D}$  preserves limits: ... see figure 2 Finite limits commute with filtered colimts.

# 1.5. Adjunctions. $R : \mathbb{D} \leftrightarrow \mathbb{C} : L$

Functors back and forth.

Aside on categories of categories as a 2-category,  $\mathbb{CAT}$ . An isomorphism is not very interesting, but an equivalence is! (Recall full, faithful, almost surjective on objects)

An equivalence would be the data

$$\begin{split} \eta: \mathbf{1} & \longrightarrow \mathsf{RL} \\ \varepsilon: \mathsf{LR} & \longrightarrow \mathbf{1} \end{split}$$

where each natural transformation is a natural isomorphism. This is a little too strong though.

We instead ask for the following triangle

If this situation happens then we write:  $R \vdash L$  and call R right adjoint to L and L is left adjoint to R.

We can also write this as an isomorphism of hom-sets:

$$\mathbb{C}(c, Rd) \cong \mathbb{D}(Lc, d)$$
.

How do we get the  $\eta$  and  $\varepsilon$  from this?

Exercise: Write down what is needed for  $\eta$  and  $\varepsilon$  at an object c. Hint: use d=Lc and consider the proof of the Yoneda Lemma.

Example:

 $U:\mathbb{G}rp \leftrightarrow \mathbb{S}et:F,$  where U is the forgetful functor and F is the free group making functor.