BIG PICTURE

Several topological constructions for a space X are determined by the hornstopy type of X.

$$X \simeq Y$$

$$\pi_{\kappa}(x) = \pi_{\kappa}(Y) \quad H_{\kappa}(x) = H_{\kappa}(Y) \quad H^{\kappa}(x) = H^{\kappa}(Y)$$

$$\chi(x) = \chi(Y)$$

In 1936 Hurewicz proved The Coloring:

The $\pi_{i}(X) = \pi_{i}(Y)$ and $\pi_{i}(X) = \pi_{i}(Y) = 0$ for $X \cong Y$.

It we say T:=T,(X), her such spaces are "K(1,1);".

Hurevicz's Neoren tells us that $\mathcal{H}(\tau,1)$ spaces up to honotopy "are" just groups. This gives us an arrow back up the choice diagram $\pi_i(x) = \pi_i(y) \stackrel{\text{if } K(x_i)}{=} \chi \simeq Y$.

So, all the constructions that are determined by the honotopy type of a space can be modified to be constructions distermined by groups (if we restrict ourselves to k(t)s).

RINGS 4 MODULES

I include this only because I have had to remind myself about rings to readules while receding through Brown.

A ring (unital, not necessorily commutative) is an abelian group R equipped with

i) A unit 1ER ·: R×R -> R Such that ii) A bilinear Map 4 ((1.52).13 = 17. (12.13) (associative). 1. r = r YreR

Bilineur Means (1,+12).13=1,13+12.13 4 し・(じ+は) = いい + いろ i.e. a honomorphism ROR -> R.

Our rings are not necessarily Communative (r. rz ?=? rz.r1)

I will drop the ".". So rs:= r.s.

For example 72 is a ring, so is 2° a R (atthough Ris also a field). Paly rowind rings are nice.

Def

A (lef) module over a ring R is an abelian group

M & a ring homophorphism $p: \mathbb{R} \longrightarrow \operatorname{End}(M)$.

i.e. p(rs+t) = p(r)p(s) + p(t) q $p(l) = Id_m$.

I will write the action of ρ as "." So $r.x := \rho(r)(x)$. The "left" part comes from $\rho(rs) = \rho(r)\rho(s)$. A right world have $\rho(rs) = \rho(s)\rho(r)$.

For example \mathbb{Z}^2 is a module over \mathbb{Z} (every \mathbb{R}^n is a (face) module over \mathbb{R}).

A more interesting example is There is a module over The (do all multiplication/addition in The Phen take mod 2).

Del

A module M over R is "free" if I ECM such that E is a generaling set for M and E is linearly independent.

is. YHEM I IT S.t. M= STrie; of Strie: = 0 => r=0 yi.

REVIEW OF CHAIN COMPLEXES

Let R be a ring (arbitrary). A graded R-module is a seq. of R-modules (Cn) nex. At mup of degree p^* is a collection of home $O_n\colon C_n\to C_{n-d}$

A "their complex" (C,d) over R is a goaded R-module with a map of of degree -1 such that $d^2=0$. Le usually omit d in our robustion "C is a duin complex".

e.g.
$$\frac{2}{\sqrt{2}} \xrightarrow{2} \frac{2}{\sqrt{2}} \xrightarrow{2} \frac{2}{\sqrt{2}} \xrightarrow{2} \frac{2}{\sqrt{2}} \xrightarrow{2} \cdots$$

$$\stackrel{!!}{C_n} \stackrel{!!}{C_{n-1}} \stackrel{!!}{C_{n-2}} \stackrel{!!}{C_{n-2}} \cdots$$

To such an object we associate the following graded modules.

- Cycles $Z(C) = (Z_n)_{n \in \mathbb{Z}} := (\ker A_n)_{n \in \mathbb{Z}}$
- · Boundaries B(L) = (Bn) NEX := (In dmi) NEX
- · Hornsogn H(L)=(Ha)nez := (Zn/Bn)nez.

Muybe d hus degree +1 istead of -1. This is really the same situation as above under a remapping of indices Cn (-) C-n.

Notationally every "NOUN" becomes "CONOUN" and indices go upstairs.

Cn ~> Cn.

CHAIN MAPS & HOMOTOPIES

A chain map $f: C \rightarrow C'$ is a collection of homes $(f_n: C_n \rightarrow C_n')_{n \in \mathbb{Z}_+}$ such that all the squares commute.

Suppose There are two chain maps of a g. A homotopy equivalence $f \stackrel{.}{\simeq} g$ is a collection of homo $(h: C'_n \rightarrow C'_{nn})_{n \in \mathbb{Z}}$ such that dnochn + honden = In - gn

Cn+1 dn+1 Cn dn Cn-

If I h 12g then we say f=g.

Usually +* A chain map $f: C \rightarrow C'$ includes a map $H(\ell): H(C) \rightarrow H(C')$ and $H(\ell)$ is an isomorphism if f = g.

We say $f: C \rightarrow C'$ is a hondopy equiv if $\exists f': C' \rightarrow C$ s.t. $ff \simeq idc$ 4 $ff' \simeq idc'$

If I a how dopy equiv f: C-> C then H(f) is an isomorphism.

HOM POINT OF VIEW

Given two chain complexes C 9 (', we debine a fundous complex" Hom (C,C'). The graded modules are all the degree n homes $C \longrightarrow C'$, so

The boundary operation Dn: How (C,C') n -> How (C,C') as is defined as $D_n(f) = d'f - (-1)^n f d$

0-cycles are ker(Do) =-(-1)'

f \(\) Ker \((h \rightarrow d'h - hd) \(\) d'f = fd \((\) Clean neep commeting So O-cycles are the chain neeps \(C \rightarrow C' \).

O-Bomberies are In(D₁) =-C-1)'

for In(h \rightarrow d'h + hd) \Rightarrow \frac{1}{2}h \quad f = f-0 = d'h + hd

\Rightarrow \frac{1}{2}O.

So O-boundaries are the null handopic chain maps.

Now consider H. (Han (C,C')). This is $\frac{\ker(D_0)}{\operatorname{Tu}(D_1)} = \frac{\operatorname{Chain maps} C \to C'}{\operatorname{Aull how}. C \to C'}$ which is exactly "Chain maps $C \to C'$ up to homotopy. We use [C,C'] as rotation for this.

SNAKE LEMMA

Prop:

A short exact seg. of chain complexes gives a long exact seguence in homology (Snake lemma).

iz. given $0 \rightarrow C \xrightarrow{i} C \xrightarrow{\pi} C^{\pi} \rightarrow 0$ exact with i, π their rups. There exists a L.E.S.

...
$$H_{n}(\dot{C}) \xrightarrow{H(d)} H_{n}(C) \xrightarrow{H(f)} H_{n}(C'') \xrightarrow{\partial} H_{n-1}(\dot{C}) \xrightarrow{\rightarrow} ...$$

MAPPING LONE

Assume
$$H_*(C'') = 0$$
. Then by the above, we would have $H_n(C'') \longrightarrow H_n(C') \longrightarrow H_n(C') \longrightarrow H_{n-1}(C'') \Longrightarrow H_n(C') \cong H_n(C)$

So, Hx(C") can clascribe how Hx(C') fails to be isomorphic to Hx(C).

The "cokernel" of a chain map $f: C \rightarrow C'$ is

(4(c), and we require this to be a chain complex. On each module we have the exact seg.

Now we next the bollowing diagram, which would show that Coker (f) is a Chair complex and $\pi: C \longrightarrow Coker (f)$ is a Chair wap. Let $C''_g := Coker (f_g) \ \forall g$.

By the universal property of the quatient, we can laster Today, uniquely through That it Ker (That) = In (form) \(\) Ker (Th date) (\(\) \(\) To dot for \(\) = 0).

By The above commuting square we have

(Th date) \(f_{Art} = Th \) (\(d_{Art} f_{Art} \)) = Th (\(f_{A} d_{Art} \)) = (Th fa) \(d_{Art} = 0 \).

So yes, In (int) \(\) Ker (Taclar) So if we flort off with an inclusion chain map i: C' -> C, then we can cook up a S.E.S. 0 -> c' -> c -> (sker(i) -> 0 and get a corresponding L.E.S. resing the shake lemma But, what if we just have a generic chain wasp f: C' -> C (not injective). In this case we want to construct a Chain C× A & B (noing f:C'->c) S.t. we have a S.E.S. 0 → C → A → B → 0. We do this rising the "pupping cone of f: C'-> C."
To define this, first define the "suspersion of C, I, C The mapping cone is deboted to be the chain CX ((", d") where $C'' := C \oplus S_i C'$ and d''(c,c') = (dc + fc', -d'c')i.e. (second $f: C' \rightarrow C$) $d'' = \begin{pmatrix} d & + \\ 0 & \preceq d' \end{pmatrix}$

be have a S.E.S. $O \rightarrow C \longrightarrow C \oplus IC' \longrightarrow IC'$ and when we apply the connecting homomorphism from the Snake lemma we find $\partial: H_n(IC') \longrightarrow H_{n-1}(C)$ is exactly $H(f)_{n-1}: C_{n-1} \longrightarrow C_n$.

...
$$H_n(C') \xrightarrow{H(f)_n} H_n(C) \longrightarrow H_n(CoZC') \longrightarrow H_{n_1}(C') \longrightarrow ...$$

tells us that $H(f)$ is an isomorphism (f is a neak equivalence) iff $H(C \oplus ZC') = \circ (C \oplus ZC') := \circ (C \oplus$

So, me L.E.S.

• Prop: $f: C \to C'$ is a honotopy equiv. ill its impping cone $C \not= \Sigma C'$ is contractible.

 $0 \rightarrow \text{Ha}(C) \otimes_{R} M \rightarrow \text{H}(C \otimes_{R} M) \rightarrow \text{Tor}_{1}^{R}(\text{Ha}(C), M) \rightarrow 0$ $0 \rightarrow \text{Ext}_{R}^{1}(\text{Ha}(C), M) \rightarrow \text{H}^{n}(\text{Haw}_{R}(C, M)) \rightarrow \text{How}_{R}(\text{Ha}(C), M) \rightarrow 0$

FREE RESOLUTIONS

R a ring with ideality, M a (left) R-Module.

· Det A "sesolubian" of M is an exact seq. of R-modules.

... $\longrightarrow F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\varepsilon} \mathcal{M} \longrightarrow 0$ It each I is been then this is a "bee resolution".

Free resolutions can always be cooked up:

1) Choose a surjection to $\stackrel{\epsilon}{=}\gg M$ (Choose a gen. set for M). 2) Choose a surjection $f_1 \longrightarrow \ker(\epsilon)$ (Choose relations for M).

If 1 0 → Fn → ... -> Fo -> M->0 then he say the resolution has length & n.

· Examples

- A free module f has the free resolution $0 \rightarrow f \rightarrow f \rightarrow 0$. - If R=7/2 or any PID, Then submodules of free readules ore free (NOT OBUTOUS). So Ker (E) = Fo is Rece, giving

us the following tree resolution.

$$0 \longrightarrow \ker(2) \longrightarrow f_0 \xrightarrow{\Sigma} M \longrightarrow 0$$

e.g. 0 -> 22 -> 2/2 ->0 or 0 →2 → 2 → 2 →0

with timage of Tin R - Let R= 2[T] (12-1) $(t=T+(T^2-1))$. Let M be the R-module R(t-1)

We have the debining projection $\mathbb{R} \xrightarrow{\pi} \mathcal{M}$

And since $(T^2-1)=(T-1)(T+1)$, something is in The nontrivial Kernel of T (multiples of (t-1)) Iff it is a multiple of (t+1). So the following is exact.

The non trivial kernel of $R \xrightarrow{(t-1)} R$ 13 exceeding all the number of (t+1) and so on... so the following 13 except.

... $\mathbb{R} \xrightarrow{(\xi-1)} \mathbb{R} \xrightarrow{(\xi+1)} \mathbb{R} \xrightarrow{(\xi-1)} \mathbb{M} \longrightarrow 0$.

And R B a free module with besis 313, so this is a free projection.

N.B. If Mis on R-module, Mur f; need to be free our R.

GROUP RINGS

6 a group, Then 26 (or 76[63) be The Free 72-modele generalised by the elements of G. i.e.

$$766 = \begin{cases} \sum_{g \in G} a(g)g & | a(g) = 0 \text{ almost everywhere } \end{cases}$$

Multiplication in G extends linearly to 26 x 26 -> 26 making 26 a ring. The integral group ring of G.

Homorry (26, R) & Homograp (G, R).

 Example Let $b = cyclic group of order 1. Then I tec with <math>3t^{3}_{1 \le i \le n} = ce$ forms a borns for KG. So ZG ≈ <u>X[7]</u>. G MODULES Recall 26 has a ring structure. A (left) 76-Module (also called a G-Module) is a (left) module over ZG. That is... an abelian group A along with a ring homomorphism $p: 2G \longrightarrow \text{End}(A)$. In light of Homoring (26, R) = Hongonp (G, R"), this areans Homring (ZG, End (A)) ≈ Hongap (G, (End (A))*) = Hongoup (G, Aut (A)). So, 6-redules are just an abolion group A along with a 6-subian on A. We can cook up a G-Module from any G-Seb X. Let X be a G-Set. Leb ZX denote he free abolian group generated by X. We an extend $G \otimes X$ to a \mathcal{T} -linear action $G \otimes \mathcal{T} X \times (g \cdot (x_1 + x_2) = g \cdot x_1 + g \cdot x_2)$. The resulting G-module is called a "parameterian module". For example G subs on its set of left cosets Rar any $H \leq G$. ($G \otimes G_H$).

We can combine two G-Sets by taking the disjoint union. if GOX, 4 GOX2 then GOX(X, HX2)=:X where he action gox depends on whether XXXI or DCE X2.

The resulting permetertian module is the direct sum Z[X, ∐ X2] = ZX, ● ZX2

So, if GOX is kree (Stab (ox) = 1 Vox EX), then IXX is a free 76 module with basis =.

RESOLUTIONS OF Z OVER ZG VIA TOPOLOGY

We always have the trivial action of G on an abelian group g.a = a yg ya. So, here we consider The as a G-module nim trivial action. We will then show that free scoothstans of this module can arise from free actions of G on complexes at the second complexes are the second complexes at the second complexes are the second complexes ar

Det

A 6-complex is a CW-complex with a cellular G-action. i.e. $R \mapsto g \cdot R$ is a homeomorphism that preserves cells.

Recall the cellular chain complex for a CW-cx X. $C_n \xrightarrow{\partial_n} C_{n_1} \xrightarrow{\partial_{n_2}} \cdots \xrightarrow{\partial_n} C_n \longrightarrow 0$.

Where each $C_n \cong 7k^2$ where $g = \# \S_n - cells$ in $\times \S$. The boundary nups relate to the degree of the attaching nups of the n-cells to the n- skeleton \times^{n-1}

Moreover, if X is a G-Complex, then G permutes in-dimensional cells, so each Cn is a G-module. The "augmentation map" $E: C_0 \to Z$ where $E(N) = 1 \ \forall \ 0$ -cells N, is also a G-module map. So... he have a Chair complex of G-modules.

To see that the boundary news is indeed a G-Module map, we need to show that it is G-equivariant. i.e. $g \cdot d(e_a) = d(g \cdot e_a) \quad \forall \; n\text{-cells} \; e_a$.

Since X is a 6-complex, The affecting map of the cell $g \cdot ea$ is the map $g \circ fa$ where $fa : S^{n-1} \longrightarrow X^{n-1}$ is the affecting map of the cell ea.

 $S^{n-1} \xrightarrow{\ell_e} V S^{n-1}$ i.e. ue hour this commutative diagram. So dey $\left(\frac{\partial(e_a)}{\partial e_a}, \frac{\nabla e_a}{\nabla e_b}\right) = deg\left(\frac{\partial(g_a)}{\partial g_a}, \frac{\nabla e_b}{\nabla e_a}, \frac{\nabla e_b}{\nabla e_b}\right)$ We have g. d(en) = g. S. Xabeb = S. Xabeg.6 4 $\partial(g \cdot e_a) = \partial(e_{ga}) = \sum_{b} \chi^{gab} e_b$ But big g.b is just a permutation, so By computibility $\sum_{b} \gamma^{ou} \circ e_{b} = \sum_{b} \gamma^{ga} g^{b} e_{gb}$ $= \sum_{b} \gamma^{ab} e_{g,b} = g \cdot \delta(e_a).$ So. Indeed The Cellular Chain CX is a chain CX of G-modules. Furthermore if the G-complex is free, i.e. perantes n-cells freely, then each of these En is a free G-module. And the homology of the Cellular chain complex is the homology of X, so if $H_n(x) = 0 \ \forall n \ge 2$ then the Cellular chain cx. we have need is exact. So

· Prop! Let X be a contractible free G-complex Then The augmental cellular chair complex (with E: Co -> 2 as alone) is a free resolution of the over KG.

This tree in nicely with regular coses.

A covering usup $p: \widetilde{X} \to X$ with group of deck transformations G is said to be "regular" it

in) to cuts transfively on $p^{-1}(x)$ $\forall x = (ix. X \cong \frac{x}{6})$.

in) The image of $\pi_{i}(X) \xrightarrow{p_{i}} \pi_{i}(X)$ is normal in $\pi_{i}(X)$

(For one and honce all choices of buse points).

in) I closed loops win X, it I a lift of w which is closed then all lifts of w are closed.

• Prop Given a regular cover $p: X \to X$ with group of leak tensformations G, we have $G \cong \P_1(X)$ $P_*(\Pi_1(X))$

So if \widetilde{X} is simply concertal $(\widetilde{X}$ is universal conser of X) then $G \cong \pi_i(X)$.

· Prop

Suppose p: Y-> Y is a regular cover with GNY. (Y= YG)

If Y is a CW-cx Then Y inherits a G-complex structure. In this construction, The action of G on each pr'(v) (& = Y on open cell) is free (on cells).

e.g. Y P ZQY The free on O-cells & 1-cells in Y.

So, if we have a CW-complex Y Such that:

i) Y is connected

ii) $\pi_i(Y) = G$ iii) Universal const of Y is contractible

• Det:

Such a Y 15 collect a K(G,1) - complex or

"Ellenberg Marhane complex."

Then GNY freely and this gives us a free resolution of the over The. The modules Cn are free products of # gorboits of n-cells?

(ordita (iii) can be replaced by iii') HiY = 0 for i72 (cw - complex only) iii'') $\pi_i Y = 0$ for i72