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1 Introduction

We want to understand 4-manifolds. From algebraic topology, we have seen that various invariants give
us a way to distinguish between different 4-manifolds. For example, we can consider the fundamental
group π1, the homology groupsHk, the cohomology groupsHk, and the intersection formH2⊗H2 → Z.

One reason why we want to study gauge theory is that it gives us a way to construct new invariants
of 4-manifolds. The first result to come out of gauge theory is the following:

Theorem 1.1 (Donaldson). Let X be a (simply connected) compact oriented smooth 4-manifold,QX its intersec-
tion form. Then QX is diagonalisable.

Contrasting this with Freedman’s result that any unimodular symmetric bilinear form is the inter-
section form of some closed oriented topological 4-manifold, we can construct topological 4-manifolds
with no smooth structure. Similar techniques can be used to construct exotic R4.

Plan for today:

• Review content on differential geometry of vector and principal bundles,

• Overview on gauge theory and Seiberg–Witten invariants.

Throughout, all manifolds will be assumed to be smooth. Apologies for the bias towards 4-manifolds
over 3-manifolds.

2 Bundles

2.1 Fibre, vector and principal bundles

A smooth map π : E→ X between smooth manifolds is called a locally trivial fibration with fibre F if there
exists an open cover {Uα} of X, and diffeomorphisms

Φα : π−1(Uα) → Uα × F

such that

π−1(Uα) Uα × F

Uα

Φα

π pr
1

commutes. The Φα are called local trivialisations of the fibre bundle.
The transition maps of the fibre bundle are the maps

gβα : Uα ∩Uβ → Diff(F)

given by
Φβ ◦Φ−1

α (x, v) = (x, gβα(x)(v)).
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The transition maps satisfy the cocycle conditions

gαα = id,

gγβgβα = gγα.

Conversely, given an open cover {Uα} of X and maps gβα : Uα ∩ Uβ → Diff(F) satisfying the cocycle
conditions, we can construct a locally trivial fibration with fibre F and transition maps gβα.

A section of the fibre bundle π : E→ X is a smooth map s : X→ E such that π ◦ s = idX. The space of
all sections is denoted by C∞(X, E).

Let G ⊆ Diff(F) be a Lie group, which acts on F via a left action. We say that the fibration π : E→ X

has structure group G if there exists local trivialisations {Φα} such that the transition maps gβα take
values in G. In this case, we call E a G-bundle.

An automorphism or a gauge transformation of a G-bundle π : E → X is a smooth map u : E → E such
that π ◦ u = π, and the maps

uα(x) = Φα|x ◦ u ◦Φα|
−1
x : Uα → Diff(F)

take values in G. The uα satisfy
uβ = gβαuαg

−1
βα.

The set of all gauge transformations is denoted by G(E), and this forms a group, called the gauge
group of E.

Example 2.1. If F = R
n, and

• G = GL(n,R) we obtain (real) vector bundles,

• G = SL(n,R) we obtain oriented vector bundles,

• G = O(n) we obtain vector bundle with inner product,

and so on... If we use C
n then we obtain complex vector bundles.

Finally, we need to introduce the notion of a principal bundle. Let G be a Lie group, a principal
G-bundle π : P → X is a locally trivial fibre bundle with a smooth right G-action

P ×G→ P (p, g) 7→ pg

such that π(pg) = π(g), and we have an atlas of equivariant local trivialisations

Φα : π−1(Uα) → Uα ×G.

In this case, the transition maps are of the form

Φβ ◦Φ−1
α (x, γ) = (x, gβα(x)γ).

2.2 Associated and frame bundles

Let E→ X be a fibre bundle with structure group G. G acts on the model fibre F, but to write down the
action of G on Ex, we must choose an identification of F with Ex.

AG-frame at x ∈ X is a diffeomorphismψ : F→ Ex, such thatΦα(x, ·) ◦ψ ∈ G for any αwith x ∈ Uα.
The collection of all such forms a bundle, called the G-frame bundle

F(E) = {(x,ψ) | x ∈ X,ψ : F→ Ex a G-frame}

and this has a right G-action.
Conversely, given a principal bundle π : P → X, and a homomorphism ρ : G→ Diff(F), we can form

a locally trivial G-bundle

E = P ×ρ F =
P × F

G

where G acts on P × F by (p, v)g = (pg, ρ(g−1)v). This is called the associated bundle.
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One example of this is that of the adjoint bundle. A Lie group G acts on its Lie algebra g via the
adjoint representation. For matrix Lie groups, this is exactly conjugation. The associated bundle is
denoted by

AdP = P ×Ad g.

Sections of this bundle are maps ξ : P → g satisfying

ξ(pg) = g−1ξ(p)g,

which forms a Lie algebra, which we denote by

Ω0(X, gP) = Ω
0
ad(P, g).

The notation on the right means that we are considering G-equivariant maps P → g.

2.3 Bundle valued forms

Using cocycles, given vector bundles E, F, we can form bundles E∗, E⊗ F, E⊕ F, SnE,ΛnE. In particular,
given smooth manifold X, we have the tangent bundle TX. The dual is the cotangent bundle T∗X.

The space of k-forms on X is
Ωk(X) = C∞(X,ΛkT∗X).

Given any vector bundle E→ X, the space of k-forms on Xwith values in E is

Ωk(X, E) = C∞(X,ΛkT∗X⊗ E).

3 Connections

3.1 Connections on vector bundles

Let E → X be a vector bundle. A covariant derivative on E is an R-linear map ∇ : C∞(X, E) → Ω1(X, E),
such that

∇(fs) = f∇s+ df⊗ s

for f : X→ R and s ∈ C∞(X, E). Within a trivialisation Φα,

(∇s)α = dsα +Aαsα

for a matrix valued 1-formAα ∈ Ω1(Uα, gl(n,R)). If E has structure group G ⊆ GL(n,R), and {Φα} is a
collection of compatible trivialisations, a covariant derivative ∇ is called a G-covariant derivative if each
Aα ∈ Ω1(Uα, g).

The space of covariant derivatives on E is naturally an affine space modelled on Ω1(X,End(E)). On
this space, we have a G(E)-action as follows:

u∗∇ = u−1 ◦ ∇ ◦ u.

3.2 Ehresmann connections

Let π : E→ X be a fibre bundle. Then for each p ∈ E, we have a map

dπp : TpE→ TxX.

We will write
Vp = ker(dπp)

for the vertical subspace. A subspace Hp of TpE is horizontal if

TpE = Vp ⊕Hp.

An Ehresmann connection onE is {Hp}p∈E horizontal subspaces, which depend smoothly onp. WhenE
has additional structure, we can ask for the Ehresmann connection to be compatible with this additional
structure.
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If E is a vector bundle, let sλ : E→ E denote the map defined by scalar multiplication by λ ∈ R. Then
we would ask for

Hλp = dsλ(Hp).

Note that for a vector bundle, a covariant derivative determines an Ehresmann connection, and an
Ehresmann connection determins a covariant derivative. Thus, I’ll be sloppy and call everything a
connection.

3.3 Parallel transport

Given an Ehresmann connection, we have a natural notion of parallel transport. Since dπp : TpE→ TxX

is surjective, we have an isomorphism
dπp : Hp → TxX.

Thus, given any tangent vector v ∈ TxX, there exists a unique horizontal lift ṽ ∈ Hp.
Given a curve γ : R → X, there exists a parallel transport map

Pγ : Eγ(0) → Eγ(1)

which allows us to identify fibres of the fibre bundle. Note that if E has structure group G, and the
connection is compatible with the structure group, then Pγ is “compatible” with the G-structure. For
example, if E is an O(n)-bundle, then Pγ is an isometry.

Suppose E is a vector bundle. The holonomy group of the connection is the group

Hol(E,∇, x) = {Pγ : closed loops γ based at x}.

3.4 Connections on principal bundles

Let P → X be a principal G-bundle. For g ∈ G, let rg : P → P denote the right multiplication map. Then
an Ehresmann connection on P is a smooth family of horizontal subspaces {Hp}, such that

Hpg = drg(Hp).

Any such connection is given by the kernel of a one-form A ∈ Ω1(P, g), which satisfies

Apg(vg) = g
−1Ap(v)g

Ap(pξ) = ξ

for v ∈ TpP, g ∈ G, ξ ∈ g. We call A a connection 1-form, and the set of all such is denoted by A(P). Note
that A(P) is an affine space, modelled on Ω1(X, gP). The group G(P) of gauge transformations acts on
A(P) by

u∗A = u−1du+ u−1Au.

4 Curvature

4.1 Curvature on vector bundles

Given a covariant derivative ∇ on a vector bundle E, we get associated operators

∇ : Ωk(X, E) → Ωk+1(X, E).

A natural question is then: is ∇2 = 0? In general, the answer is no.
We define for v,w vector fields on X, s a section of E,

F∇(v,w)s = ∇v∇ws−∇w∇vs+∇[v,w]s.

Note that F∇(v,w) = F∇(w, v), and that F∇ isC∞(X)-linear. Thus, we get an element F∇ ∈ Ω2(X,End(E)).
The Bianchi identity states that

∇F∇ = 0.

Locally,
F∇ = dAα +Aα ∧Aα.
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The connection ∇ is flat if F∇ = 0.
Note that if E has structure group G, and ∇ is a G-connection, then F∇ ∈ Ω2(X,Endg(E)), where

Endg(E) = {A : Ex → Ex | ψ−1 ◦A ◦ψ ∈ g}

for every G-frame ψ : Rn → Ex. For example, if we choose an inner product on E, and suppose ∇ is an
O(n)-connection, then F∇ is skew-symmetric.

4.2 Curvature on principal bundles

Recall that a connection on a principal G-bundle P → X is given as the kernel of a connection 1-form
A ∈ Ω1(P, g). The curvature of A is the 2-form FA ∈ Ω2

ad(P, g) defined by

FA(u, v) = dAp(u, v)

if u, v ∈ Hp, and zero otherwise.
Suppose we have a representation ρ : G → GL(V), and consider the associated bundle E = P ×ρ V .

The connection A on P induces a connection ∇ on E, and

F∇(s) = dρ(FA) · s.

4.3 Chern classes and Chern–Weil theory

Let E→ X be a complex vector bundle over a compact manifold. Suppose E has rank k. Define the total
Chern class of E as

c(E) = c0(E) + · · ·+ ck(E),

where ci(E) ∈ H
2i(E) is the i-th Chern class. Axiomatically, we have a functor

c : (E→ X) 7→ c(E) ∈ H∗(X),

which satisfies:

(i) naturality - isomorphic vector bundles have the same Chern class,

(ii) functoriality - c(f∗E) = f∗c(E),

(iii) direct sum - c(E⊕ F) = c(E)c(F)

(iv) trivial - c(trivial) = 1,

(v) c1(OCP1(1)) = [H].

Note that ck is the Euler class. In fact, the Chern class (as a functor) is determined by the Chern
classes of line bundles.

Chern-Weil theory says that the Chern class (modulo torsion) of a complex vector bundle can be
computed using the curvature of any connection. For example,

c1(E) =
i

2π
tr(F∇) c2(E) =

1

8π2
(tr

(

F2h
)

− tr(Fh)
2
)

and so on. In particular, the Chern classes, which are topological quantities, can be computed using
analytic methods.

5 Riemannian geometry

5.1 Levi-Civita connection

Let (X, g) be a Riemannian manifold of dimensionn. The metricg gives TM anO(n)-structure. However,
O(n)-connections are not unique. The Levi-Civita connection of (X, g) is the uniqueO(n)-connection such
that

[v,w] = ∇vw−∇wv

for all vector fields v,w on X.
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5.2 Riemann curvature tensor

The Riemann curvature tensor is the curvature of the Levi-Civita connection ∇, which we will (now)
denote by R. This is defined by

R(u, v)w = ∇u∇vw−∇v∇uw−∇[u,v]w.

There are various symmetry properties which this satisfies, but I won’t cover them today.
Let e1, . . . , en be an orthonormal frame (i.e. local sections) for TX. The Ricci curvature is

Ric(u, v) =
n∑

i=1

⟨R(ei, u)v, ei⟩,

which is a symmetric bilinear form. The scalar curvature is

Scal =
n∑

i=1

Ric(ei, ei).

Warning: Different people have different conventions on which indices to sum over, and (potentially)
factors of 2 appearing.

When n = 2, R and Ric are determined by Scal, which is double the Gaussian curvature.
When n = 3, R is determined by Ric.

5.3 Hodge theory

Let V be a vector space of dimension n, and let ΛkV denote the k-th exterior power of V . Recall that

dim(ΛkV) =

(

n

k

)

.

In particular, dim(ΛnV) = 1. An inner product on V induces an inner product on ΛkV for all V . Thus,
there are exactly two elements of ΛnV of norm 1, which are the orientations of V .

Choosing an orientation gives us a fixed isomorphism ΛnV ∼= R. We now get a pairing

ΛkV ×Λn−kV → ΛnV ∼= R

(α,β) 7→ α∧ β.

This pairing is non-degenerate, and so we get a map ∗ : ΛkV → Λn−kV , which satisfies

⟨α,β⟩ = α∧ ∗β.

Suppose X is compact and oriented. Applying the above to V = T∗xX, we get Hodge star operators

∗ : Ωk(X) → Ωn−k(X).

We can use this to define the codifferential

d∗ = (−1)n(k+1)+1 ∗ d∗ : Ωk(X) → Ωk−1(X),

which is the adjoint with respect to the L2-inner product to the exterior derivative d : Ωk−1(X) → Ωk(X).
The Laplace–Beltrami operator is

∆ = dd∗ + d∗d : Ωk(X) → Ωk(X).

Warning: On R
n with the usual inner product,

∆ = −
∑

i

∂2

∂x2i
.

We say that a differential form α is harmonic if ∆α = 0. Equivalently, dα = 0 and d∗α = 0. Let Hk(X)

denote the space of harmonic k-forms on X.

Theorem 5.1 (Hodge).
Hk(X) ∼= Hk(X;R).

The left hand side is defined using elliptic PDE theory, whereas the right hand side is a purely
topological quantity.
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6 Gauge theory

6.1 Maxwell’s equations

Recall that the (vacuum) Maxwell equations are that

div(E) = 0

div(B) = 0

∂B

∂t
+ curl(E) = 0

∂E

∂t
− curl(B) = 0,

where E = (Ex, Ey, Ez) is the electric field and B = (Bx, By, Bz) is the magnetic field. We can write

F = Exdx∧ dt+ Eydy∧ dt+ Ezdz∧ dt+ Bxdy∧ dz+ Bydz∧ dx+ Bzdx∧ dy

for the electromagnetic tensor, which we can think of as a 2-form on R
4. Then Maxwell’s equations

become
dF = 0 d∗F = 0.

Since H2(R4) = 0, we can find some A such that F = dA, which is called the electromagnetic potential.
Then since d2 = 0, all we need is that d∗dA = 0.

Note thatA is not unique, it is only unique up to addition of a ∈ Ω1(R4) such that da = 0. Physically,
this represents a “redundancy” of the system. One way of ensuring A is unique is to ask for d∗A = 0,
which is a “gauge fixing” condition. Then Maxwell’s equations becomes

(dd∗ + d∗d)A = 0.

But the left hand side is just the Laplacian! So if we consider Maxwell’s equations on a compact oriented
4-manifold X, then Hodge’s theorem tells us that the space of solutions is exactly H1(X;R).

We can think of A as defining a connection on the trivial bundle X × R
2, which we can think of as

an SO(2)-bundle. The non-uniqueness corresponds exactly to the SO(2)-symmetry of the equation, or
redundancies in the system. The electromagnetic field F is then given by the curvature of this connection.

6.2 Yang–Mills theory

The groupU(1) = SO(2) is abelian, which considerably simplifies things. For physics reasons, we would
like to consider more general groups G, e.g. SU(2) for the weak force, SU(3) for the strong force, and so
on. This leads us to Yang–Mills theory.

Let P → X be a principal G-bundle. A connection A on P is called Yang–Mills if

∇∗
AFA = 0.

Note that the Bianchi identity implies that ∇AFA = 0. When G = SO(2) and P is trivial, we recover
Maxwell’s equations.

Here, ∇∗ is the adjoint of the covariant derivative, defined with respect to the L2-inner products. An
equivalent statement is that

∇A ∗ FA = 0.

We can now start doing some numerology. Suppose X is a 4-manifold. Then the Hodge star defines
a map

∗ : Ω2(X) → Ω2(X),

with ∗2 = 1. Thus, we get an eigendecomposition

Ω2(X) = Ω2
+(X)⊕Ω

2
−(X),

whereΩ2
+(X) consists of the self-dual forms andΩ2

−(X) the anti-self-dual forms.
In particular, since curvature is a 2-form, we say that A satisfies the self-dual Yang–Mills equation if

∗FA = FA

and A satisfies the anti-self-dual Yang–Mills equation if

∗FA = −FA.
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6.3 Moduli space of solutions and 4-manifold invariants

Before, we saw that the space of solutions to Maxwell’s equations is a vector space, whose dimension is
b1. A natural question is: what about the space of solutions to the Yang–Mills equations?

As it turns out, the space of solutions can have very complicated geometry. Donaldson studied the
moduli space of anti-self-dual connections, and related the geometry of the moduli space to topological
properties of the underlying 4-manifold. This is the first gauge theoretic invariant.

The general recipe of gauge theory is similar. We write down a PDE, construct a moduli space of
solutions, and then try to extract topological information from the geometry of the moduli space. One
thing we can do is integrate a suitable cohomology class over the moduli space to get a number, and this
is closely related to enumerative geometry, which is a reading group which Noah is organising.

Remark 6.1. The main topic in Noah’s reading group seems to be Donaldson–Thomas theory, which is
an enumerative invariant defined on Calabi-Yau 3-folds. One can think of this as a holomorphic version
of Chern–Simons theory on 3-manifolds. Another topic which will show up in Noah’s reading group is
Gromov–Witten theory, which Taubes related to Seiberg–Witten theory on symplectic 4-manifolds.

There is a very interesting programme proposed by Donaldson, Thomas and Segal for defining
enumerative invariants in dimensions 6, 7 and 8 using gauge theory, but that is well beyond the scope
of this reading group.

7 Seiberg–Witten theory

Donaldson’s invariants can be used to prove many interesting results, but they are very difficult to
compute. Witten introduced the Seiberg–Witten equations, which are simpler to work with, and can be
used to recover many of Donaldson’s results.

7.1 Spin geometry

Recall that we have a double cover SU(2) → SO(3) of Lie groups. In general, we can define Spin(n) to
be the universal cover of SO(n). Roughly speaking, spinors correspond to things which get sent to its
negative after a rotation by 360 degrees, and looks something like a Möbius band.

In the second talk, we’ll see what it means to have a spin, or spinc structure on a manifold or a vector
bundle, and what obstructios exist.

When a vector bundle has more structure, it makes sense to ask for a connection to preserve that
structure. For example, we can talk about orthogonal connections on a vector bundle, which are ones
which preserve an inner product. In the third talk, we will understand what it means for a connection
to preserve a spin (or spinc) structure. Using this, we can define what is known as a Dirac operator D.

Morally, a Dirac operator is a square root of the Laplacian. More precisely, we have the Weitzenböck
formula

D2 = ∇∗∇+ lower order terms.

7.2 Seiberg–Witten equations

With all of this set-up, we can now define the Seiberg-Witten equations for a 4-manifold, which are
equations for a connection A and a monopole Φ:

DAΦ = 0 (Dirac equation)

F+A + η = σ+((ΦΦ∗)0). (Monopole equation)

The precise form of the equations doesn’t matter for now. Our goal is to study the geometry of the
moduli space

M = A/G,

where A is the space of solutions to the Seiberg-Witten equations, and G is the gauge group. The main
result is that when b+(X) > 0, M is a finite-dimensional compact oriented manifold, for a generic choice
of perturbation η.

• finite-dimensional - This follows from D being a Fredholm operator, and the dimension of the
moduli space can be calculated using the Atiyah–Singer index theorem.
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• compactness - A priori there should be no reason why the moduli spaces are compact. For
example, in the case of Yang-Mills theory, one needs to add in ideal connections (or for those who
are algebro-geometrically minded, coherent sheaves) to make the moduli space compact.

There is a general compactness result proven by Karen Uhlenbeck, and the main result when
proving compactness is proving an a priori estimate, so that we can show that any Cauchy
sequence has a convergent subsequence.

• manifold - It’s not obvious why the space A is even a manifold. We can think of the Seiberg-Witten
equations as being given by a map

S : V →W,

where V,W are infinite-dimensional Banach spaces, and A = S−1(0). In general, 0 may not be a
regular value of S, and so A won’t be well behaved.

In this case, we can use an infinite-dimensional version of Sard’s theorem (set of critical values
has measure zero/is meagre in the sense of Baire), to show that for a generic choice of η, M is a
manifold.

At this point, one may rightly object: how do we know that the moduli space does not depend on
the choice of perturbation? In some cases, we can show that for different choices, we have a cobordism
between the moduli spaces. However, in other cases, we can’t do this, and what we get is wall-crossing
phenomenon.

At the end of the day, what we want to extract are numbers.

• If M is 0-dimensional, we can count the number of points in M, with signs.

• In general, by integrating a suitable cohomology class over M, we can define the Seiberg–Witten
invariant.

7.3 Properties

How do we construct 4-manifolds? One reasonable approach is to start off with a class of “nice” 4-
manifolds, and then do things to them, such as connect sum, cut-and-paste, blow-up and so on. Thus,
to understand how the Seiberg–Witten invariant behaves, its important to understand

(i) what the Seiberg–Witten invariants of our “nice” manifolds are,

(ii) how the Seiberg–Witten invariants behave under various operations.

For (i), a reasonable choice of “nice” manifolds are Kähler surfaces. In particular, many of these
come from algebraic geometry, and we can use techniques coming from algebraic geometry to understand
them as well. Whenever we have a property about Kähler manifolds, a natural question is then whether
they hold for symplectic manifolds as well.

In fact, the Seiberg–Witten invariants can be used to construct obstructions to manifolds admitting a
symplectic structure.

For (ii), there are formulae for the Seiberg–Witten invariants of connect sums and blow-ups, which
means that in some concrete examples, we can compute how the Seiberg-Witten invariants change.

7.4 Embedded surfaces

Taubes proved that the Seiberg–Witten invariants agreed with the Gromov–Witten invariants, which
are given by counting pseudoholomorphic curves (i.e. Riemann surfaces) within a symplectic manifold.
Thus, it is natural to conjecture that the Seiberg–Witten invariants should be able to give us information
about embedded surfaces in our 4-manifold. In fact, we have a lower bound on the genus of such a
surface.
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8 Things which I did not talk about

8.1 Physics

Many of the equations which we have seen, and the ones which are studied, often come from physics.
For example, Yang–Mills theory comes from quantum field theory, and the Seiberg–Witten equations
come from supersymmetric field theory. More generally, there are many connections between the
(mathematical) physics and the applications to topology.

8.2 Analysis

The equations are often non-linear (elliptic) partial differential equations. To make sense of various
constructions, we would need completeness. In particular, we would need to work with Sobolev spaces,
and use various tools from functional analysis and partial differential equations. This is a very technical
topic, and I have not talked about it today.

8.3 Floer theory

Floer theory is an infinite-dimensional analogue of Morse theory. Much as we can recover the coho-
mology ring using Morse theory, Floer theory allows us to build stronger invariants, which are not
just numbers, but groups, rings, A∞-categories and so on. This is also closely related to the notion of
categorification.

8.4 Homotopical aspects

Given a continuous map f : X → Y, we get an induced map f∗ : H∗(Y) → H∗(X), which only depends
on the homotopy class of f. So far, everything we have mentioned is closer to working with f∗ than
with f. A lot of recent work has been dedicated to try and understand homotopical aspects of gauge
theory. For example, the Seiberg–Witten Floer stable homotopy type was used by Manolescu to show that
non-triangulable manifolds exist in dimensions ≥ 5.
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