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Lem. free ⟹  projective ⟹  flat ⟹  torsion free

Def. Flat R-module M

The functor −⊗R M is exact; sends SES to SES.

Thm. 3.2.7 Every finitely presented flat R-module M is projective.

Ex.

Z/6Z-module Z/2Z is projective but not free.

Lem. nakayama's lemma

Given a finitely generated A-module M, and J(A) the Jacobson radical of A (intersection of
all maximal ideals), with I ⊆ J(A) some ideal, then if IM =M, we have M = 0.

Intuition: (M cannot be generated by such a small part of the whole ring, unless it is zero).

Q. How is the prop below a corollary of nakayama's lemma?

Prop. For a local ring A:

to verify that a function is non-zero everywhere on Spec(A) it is enough to check that it is
non-zero at a point, the unique closed point.

Proof. Let A be a local ring with unique maximal ideal m.

Assume f(m) ≠ 0 then f ∉ m ⟹ f ∉ p ⊆ m, then f(p) ≠ 0 for all p ∈ Spec(A).

Def. Direct sums and products (e.g. in Ab or R-Mod.)



Direct product ∏β∈BAβ := {(aβ)β∈B}

Direct sum ⨁β∈BAβ := {(aβ)β∈B | all but finitely many aβ are non-zero}

Rem.

1. Direct sum and product coincide for B ∈ Finset.
2. There is a formulation in terms of maps; map out of direct sums to map uniquely out of

each Aβ, map into direct products to map uniquely into each Aβ.

Prop. For R-module M, where R is PID or local ring: M free ⟺  M projective

Proof.

PID case:
Since for P projective we have some Q such that the universal map P ⊕Q→ R is an
isomorphism. Therefore, the generators of R are in bijection with the generators of
P ⊕Q and so the map P → R is an injective map of modules. All summands of a free
module are submodules.

In a PID, we have no non-zero divisors, and all ideals are generated by one element.
Let E be a submodule of R, then E is a principle ideal, generated by e. Then
h : R→ E; 1 → e is a module homomorphism. Since R is an integral domain, h is
injective, surjectivity comes from E being an ideal.
Therefore, R≅E, and projective ⟺  free.

Local ring case:
As above projective modules over a local ring R are submodules of R. If both P  and Q
are proper ideals then P ⊕Q ⊆ m ⊆ R where m is the unique maximal ideal of R.

Therefore, at least one of P  or Q contains an invertible element and so is all of R.
The generators of P ⊕Q and R are in bijection and so the other summand must be
trivial, free of rank 0.

Def. perfect ring

R satisfies the descending chain condition on principle ideals

Def. If M is a left R-module R is a perfect ring then: M projective ⟺  M flat

Def. Injective module



All maps M → I into injective module I factor through any injective morphism M ↪ N .

Def. Projective module

All maps P →M out of a projective module P  factor through any surjective morphism
M ↪ N .

Prop. Suppose R is a domain and M is an R-module. Then:

a) If M is injective, then M is divisible. In particular, Z is not an injective Z-module.
b) If M is divisible and torsionfree, then M is injective. In particular Q is an injective Z-module.
c) If R is a PID then every divisible module M is injective. More specifically if every element
a ∈M can be 'divided' by any element of R, i.e. ∀a ∈M, r ∈ R, ∃b ∈M a = br.

Lem. (Injective Production Lemma)

If M is a flat R-module and N is an injective R-module, then HomR(M,N) is injective.

Ex.

Q is an injective Z-module.
every injective abelian group is the direct product of some of Q,Z[1/p]/Z, e.g. Q/Z
(product of injectives is injective because Hom(A,-) commutes with products).
The injective for A is the product of Hom(A,Q/Z) copies of Q/Z.

Rem. Q/Z is the direct limit of Z[1/p] ∀p

Z[1/1]/Z,  Z[1/2]/Z,  Z[1/3]/Z,  Z[1/5]/Z, . . .

All include into Q/Z in a unique way.

Prop. R-mod has enough injectives

See stacks project from Def. 15.55.5 onwards for the general proof.

Proof. For R and integral domain,

then mimic the Q/Z construction with the fraction field of R.

app://obsidian.md/%5Bhttps://stacks.math.columbia.edu/tag/01d8%5D(https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fstacks.math.columbia.edu%2Ftag%2F01d8&data=05%7C02%7C%7C1de8366854ee443c765c08dd4067597a%7C2e9f06b016694589878910a06934dc61%7C0%7C0%7C638737534798845307%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=xjC6Czf9f%2BuOmXEWrmwAcmJtXANzRZ6V2SvjP5Qz24A%3D&reserved=0)


AG ALERT

Category theory

Derived functors

Prop. For ringed spaces (X,OX) the category of sheaves of Ox-modules has
enough injectives.

Proof.

For ring R, every R- module is iso to a submodule of an injective R-module.
Let F  be a sheaf of Ox-modules.
Therefore, consider the sheaf J determined by U ↦∏x∈U Ix, for Ix the injective OX,x-
module of which Fx is a submodule.

Check that Hom(−,J) is an exact functor, and that the sheaf morphism induced by
Fx ↪ Ix is also injective.

Ref. See Hartshorne AG chapter on sheaf cohomology.

Cor. The category of sheaves of abelian groups has enough injectives.

Proof. Let the ringed space (X,OX) be the constant sheaf of rings Z

then the category of sheaves of Z-modules is just the category of sheaves of abelian
groups.

Caution.

Not all abelian categories have objects with elements:
In this case it's necessary that our epimorphisms e are formulated in terms of maps (
f ∘ e = g ∘ e ⟹ f = g ∀f, g),
monomorphism m formulated in terms of maps (m ∘ f = m ∘ g ⟹ f = g ∀f, g.))
Similarly for kernel, cokernel, and image, so Hn := cok(ker(cok(d)) → ker(d) (e is
epimorphism so this can be thought of as a quotient, im = ker ∘ cok).

e

Diagram for kernel, and cokernel



Def. Left derived functor LiF  of right exact functor F

The composite H ∙ ∘ F ∘ P , where P  is the pseudo-functor which takes you to an projective
resolution of your object, then evaluate at F , then take homology.

Prop. This is well-defined

and (up to natural isomorphism) does not depend on the choice of projective resolution of A.
p. 44 Wiebel

Proof. Using the comparison Theorem

Chain homotopic morphisms are equal under taking homology. (If
a ∈ ker(dn) ⟹ dn(a) = 0 then (fn − gn)(a) = (dn+1sn + sn−1dn)(a) = dn+1sn(a). So
dn+1sn(a) ∈ ker(dn), but dn+1sn(a) ∈ im(dn+1), so Hn(f − g) = 0. Hence,
Hn(f) = Hn(g).)

Assume P  and Q are projective resolutions of A.
By the comparison theorem, lifts of idA between projective resolutions are chain
homotopic, functor F  preserves chain homotopies, and so
Hn(F(f − g)) = Hn(F(f)) −Hn(F(g)) = 0 and LnF := Hn(F(f)) so the canonical chain
map f∗ : (Hn(F(P)) → Hn(F(Q)))n∈Z.

Similarly, there is an induced canonical chain map g∗ : H∙FQ→ H∙FP . Hence, by
functoriality we have that g∗f∗ = (gf)∗ = (id)∗ = idH∙F(P) and by the same reasoning
f∗g∗ = idH∙F(Q) so H∙(F(f)) is a natural isomorphism.

Cor. If A is projective

Then Li(A) = 0 for i ≠ 0.

Proof.

. . . 0 → 0 → A→ 0 is a projective resolution of A.

Thm. Each LiF  is an additive functor.

Proof. Exercise.



Showing derived functors are universal δ functors

Rem. Exact functors preserve derived functors

Because then almost by definition we get that the unique maps F(ker(d)) → ker(F(d)) and
F(im(d)) → im(F(d)) give isomorphisms F(Hn) ≅Hn(F).

Thm. derived functors LiF  form homological δ-functors

Proof.

By horseshoe lemma for SES (A) and projective resolutions for A′ and A′′ (and by
some definition of projective for P ′′), we get split exact sequences
0 → P ′

i → Pi → P ′′
i → 0

F is an additive functor and so preserves split exact sequences (we need them to be
split in order to conclude that exactness is preserved).
So we get a short exact sequence of complexes which by the snake lemma induces a
long exact sequence on homology.

See p.46 Wiebel to see that δi are natural transformations (uses horseshoe lemma and
comparison lemma).

Def. a functor T  is effaceable if

for every object A in its domain we have a monomorphism A→ D whose image under T . is
the zero map.

Thm. For T  a delta functor

if T i is effaceable for all i ≥ 0 then the functor is universal.

Proof.

(⟹ ) Choose a delta functor for which all T^i are effaceable and a short exact
sequence 0 → I → A→ B→ 0 where I → A is the mono that is sent to zero under T1.
So we have that T 0(A) → T 0(B) → T 1(I) → T 1(A) →. . . is exact and so
T 0(B) → T 1(I) is surjective.



Introducing Ext and Tor

To determine f 1 we will use a general fact that for a map of exact sequences

[A→ B→ C → 0] ↦ [A′ → B′,→ B′ →. . . ] the maps A→ A′ and B→ B′ determine
the map (im(ϕ) = B/A) → (B′/A′ ⊆ C ′).
Therefore, if ϕ is surjective then there is a unique C → C ′ such that the diagram
commutes.

Then for any pair (S,T 0 S 0) we have that the natural isomorphism maps T 0 → S 0

completely determine T 1 S 1.

We proceed by induction to get a unique f i+1 from f i.
Hence, T  is universal.

ϕ

f 0

−→
f 1

−→

Cor. Derived functors are universal δ-functors.

It follows then that under the assumption that A has enough injectives, that for a functor

A B of abelian categories R∙F  is the universal δ functor where T 0 ≅F , T i := RiF .
F
−→

Def. Adjunction

Functors F : A⇆ B : G such that Hom(F(a), b) ≅Hom(a,G(b))

Ex. Tensor-Hom adjunction

(− ⊗B) ⊣ Hom(B, −)

Try. Exercise for those not on the cat theory train

Prop. Category theory fact

Left adjoints preserve colimits (e.g. cokernel)
right adjoints preserve limits (e.g. kernel)

Rem. Hom(−,B) is exact for B injective

Proof. By def of injective module, Hom(−B) sends monos to monos.



The dual statement for Hom(P , −) is true for P  projective.

Hom(−,B) sends epis to epis for any module B, but precomposing with a section of the
surjection.

Def. Ext∙

For ring R and arbitrary R-module B, Hom(B, −) is left exact
and so has a right derived functor called Ext∙ in R-mod.

Def. Tor∙

For ring R and arbitrary R-module B, (− ⊗B) is right exact
and so has a left derived functor called Tor∙ in R-mod.

Clarification.

Explanation

Right derived functors are computed using projective resolutions
Left derived functors are computed using injective resolutions

Both Hom(B, −) : C → A and Hom(−,B) : C op → A are left exact and so has a right
derived functor Ext. However, projective resolutions are dual to injective resolutions,
and so for the contravariant Hom(-, B) we use injective resolutions in the opposite
category C op, i.e. projective resolutions in C, whereas for covariant Hom(B, -) we use
injective resolutions in C.
−⊗B is left adjoint and so its left derived functor can be computed using projective
resolutions.

Def. Sheaf cohomology

Γ : Sh(V ) → R−mod is right adjoint to the constant sheaves functor, so Γ is left exact.
Sheaf cohomology is the right derived functor of Γ.

Ex. For field k what is R∙Homk[x](−, k)(k) = Ext
k[x]
∙ (k, k)

k[x] × k→ k; (f, a) → f(0)a.



Useful properties in computing Ext

1. Find projective resolution of k to substitute into the contravariant Hom (domain).
Facts: k[x] is PID so projective ⟺  free.
0 → k[x] → k[x] → k[x]/ < x >→ 0

x

2. Then remove k[x]/ < x > and take homology of

0 → Homk[x](k[x], k) Homk[x](k[x], k) → 0
∘x=0
−→

3. Work out Homk[x](k[x], k) = k

4. H0 = k,H1 = k Hi = 0 for i > 1

5. H∙ = k[x]/x2

Ex.

k[x]/x2 has the standard quotient module structure

1. proj resolution is . . . k[x] k[x] → 0
x2

−→

2. . . .Hom(k[x], k) Hom(k[x], k) → 0
−∘x2

−→

3. H0 = k,H1 =< x > / < x2 >,Hi =< xi > / < xi+1 >

4. H∙ = k[x]

Prop. k[x] and k[x]/ < x2 > are koszul dual algebras.

Thm. 2.7.6 For every pair of R-modules A and B, and all n,
ExtnR(A,B) =

n HomR(A, −)(B) = RnHomR(−,B)(A).

Proof.

Hom(A, I) → Tot(Hom(P , I)) ← Hom(P ,B) are quasi-isomorphisms.
So it doesn't matter if we compute using an injective resolution of A or a projective
resolution of B, we get the same answer.
It is also possible to do both at the same time, and recover cohomology from a total



Tor Examples

complex buy taking direct sums of the ∖ diagonals (⊕n=i+jHom(Pi, I
j)).

Prop. Ext and direct sums and products

Prop. For all abelian groups A,B

Tor_1(A,B) is a torsion abelian group
Tor_n(A, B)=0 for n ≥ 2

Ex. L∙(Z/5Z⊗Z B) =: Tor∙Z(Z/5Z,B)

1. projective resolution of Z/5Z:

0 → Z→ Z→ Z/5Z→ 0
5

2. Look at 0 → Z⊗B→ Z⊗B→ Z/5Z⊗B→ 0
5

3. Find homology of 0 → B→ B→ 0
5

4. H0 := B/pB, H1 := {b ∈ B|5b = 0} gives us the 5-torsion elements of B.

Prop. B a flat R-module implies TorRn (A,B) = 0 ∀n ≠ 0



Balancing

Proof.

If we take a projective resolution P∙ of A, then P∙ is exact in non-zero degrees by
construction and since B is flat P∙ ⊗B is exact in degrees n ≥ 1.

Lem.

R = Z,B = Q shows that flat modules need not be projective.

Prop. If R is principal ideal domain then an R-module B is flat ⟺  B is torsion-
free.

Ex. So in our example, if B is torsion free, then higher tor groups are trivial.

Ex. Tork[x,y]∙ (k, k) probe the failure of k to be flat as a k[x, y]-module

1. projective resolution 0 → k[x, y] k[x, y]2 k[x, y] → k→ 0
[−y,x]
−→

[x,y]
−→

Try. tensor with k then find cohomology.

Caution.

Not all abelian categories have enough injectives or projectives but we can still define
left and right derived functors due to Yoneda Lemma and Baer's sum.

Rem. Left derived functors are right derived functors on the opposite categories

and so all results apply that apply to left, also apply to right.

Thm. Yoneda



Filtered colimits and direct limits

Intuition: an object in completely determined by all maps in/out of it; (Hom(A,X))A∈C

determines X.
Statement: HomPsh(C)(HA,Y ) ≅Y (A)

HomPsh(H1, cR(B)) ≅R(B)

H1(A) ≅A, and cR(B)(A) = R(B), so we get all maps (A→ R(B)).

Cor. Adjoints

Left adjoints are right exact and therefore when the codomain has enough projectives they
have left derived functors, right adjoints are left exact and therefore when their codomains
have enough injectives they have right derived functors.

Alt. Proof.

Apply adjunction natural iso to short exact sequence, then apply Yoneda to
0 → Hom(A,R(B′)) → Hom(A,R(B)) → Hom(A,R(B′′)) → 0 to get exactness of
R(B∙).

Ex. So in some cases we can get Tor from Ext.

...

Lem. 2.6.14 Let Z be a filtered category and A : I → mod−R a functor.

Then

1. Every element a ∈ coim(Ai) is the image of some element ai ∈ Ai (for some i ∈ Z)
under the canonical map Ai → colim(Ai).

2. For every i, the kernel of the canonical map Ai → colim(Ai) is the union of the kernels
of the maps ϕ : Ai → Aj (where ϕ : i→ j is a map in Z).

Thm. 2.6.15 Filtered colimits (and direct limits) of R-modules are exact, considered
as functors from (mod-R) to mod-R.

A short exact sequence of filtered colimit diagrams induces a short exact sequence of
colimits.



Ex.


