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1 Sequences

Ler R will be a ring, and we will work in the R-modules category.

Definition 1.1. Sequence
A sequence of R-module is a collection (An, fn)n∈Z such that fn : An → An−1.

The dual construction is called the co-sequence and it is defined as follows:

Definition 1.2. Co-sequence A co-sequence of R-modules is a collection of (An, fn)n∈Z
such that fn : An → An+1.

We can apply these functions to a chain of R-modules and we get the concept of an
exact sequence:

Definition 1.3. Exact sequence
... → An → An−1 → An−2... is exact at An if ℑfn+1 = ker fn. If it is exact at every

term it is called an exact sequence.

Let us take an example: The sequence 0 → A → B → 0 is

1. exact at A ⇐⇒ f is injective;

2. exact at A ⇐⇒ f is surjective.

Therefore, 0 → A → B → 0 is exact if and only if f is an isomorphism.
We can see that there are nicer sequences. This brings us to the concept of a short

exact sequence.

Definition 1.4. Short exact sequence A short exact sequence is an exact sequence of the
form 0 → A → B → C → 0, where B ∼= B/ℑf = B/ ker g.

Remark 1.5. A short exact sequence is called split if B = A⊕ B.

Definition 1.6. Long exact sequence A long exact sequence

A0 → A1 → A2... → An

is a family of SES for Ki = ℑfi,

0 → K1 → A1 → K2 → 0
0 → K2 → A2 → K3 → 0
0 → K3 → A3 → K4 → 0

... 0 → Kn−1 → An−1 → Kn → 0
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Definition 1.7. Morphism of sequences Let {An}, {Bn} be sequences of R-modules. A
morphism from these sequences is a collection of maps An → Bn such that the following
diagram commutes:

... → An+1 → An → An−1 → ...

... → Bn+1 → Bn → Bn−1 → ...

that is du = ud.

Remark 1.8. Sequences form a category with these morphisms where the identity mor-
phism is given by the identity map on An → An.
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2 Chain complexes

We have seen what sequences are, now let us take an example from physics and differential
calculus:

• smooth functions := C∞(R3);

• vector fields := F (R3).

Let us take the following sequences

C∞(R3) → F (R3) → F (R3) → C∞(R3),

where grad takes a scalar field into a vector, curl takes a vector into a vector, and div

takes a vector into a scalar. For a function f and a vector field X we have

1. curl (grad f) = 0 (steepest ascent doesn’t spin around);

2. div (curlX) = 0.

Both of these results are true because partial derivatives commute → much of differential
calculus is about some kind of vector spaces ”chained” together by linear maps whose
successive compositions are 0.

Definition 2.1. Chain complex A chain complex C. of R-modules is a sequence {Cn}n∈Z
such that the maps d = dn : Cn → Cn−1 are called differentials and d2 : Cn → Cn−2 = 0.

On the other hand, we can define its dual structure, the cochain complex.

Definition 2.2. A cochain complex C . of R-modules is a sequence {Cn}n∈Z such that
the maps d = dn : Cn → Cn+1 are called differentials and d2 : Cn → Cn+2 = 0.

Since we defined morphisms on sequences, morphisms of chain complexes are called
chain maps.

Remark 2.3. Operation on chain complexes
Translation: C[p]n = Cn+p for p ∈ Z;

(CO)-HOMOLOGY

... → An+1 → An → An−1 → ...

Since the double differential is 0, we can conclude that ℑdn+1 ⊆ ker dn, ∀n,, therefore,
we have a well-defined quotient module ker dn/ℑdn+1 = Hn(C.) that we call the n th

Homology of the chain complex C. .
To get more formal with the definition of this structure, we define the cycle and the

boundary.

Definition 2.4. n-cycle for c ∈ Cn, dnc = 0. The kernel of dn is the modules of n-cycles
of C. that are noted as Zn(C.).

3



Definition 2.5. n-boundary for c ∈ Cn, c = dn+1c
′ for c′ ∈ Cn+1. The image of dn+1 is

the module of n-boundaries noted as Bn(C.).

Therefore we can write the homology as Zn(C.)/Bn(C.).
Similar definitions for cocycles and coboundaries, therefore we can define the coho-

mology = Hn(C .) = Zn(C .)/Bn(C .).

Remark 2.6. Given a morphism of maps, there is an induced homomorphism from their
respective homologies called the induced homomorphism.

Definition 2.7. Quasi-isomoprhism A chain map C. → D. is called a quasi-isomorphism
if all the induced homomorphisms are isomorphisms.

Remark 2.8. The relation ’There exists quasi-isomorphism from C. to D.’ is not an equiv-
alence relation since it s not transitive!
Its transitive closure allows us to define the derived category of chain complexes.
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3 Snake lemmas

Lemmas defined over an Abelian Category that is a category where every hom-set in this
category is given the structure of an Abelian group such that the composition distributes
over addition.

Example 3.1. The category of R-modules is an Abelian category.

Theorem 3.2. 1st Snake Lemma Let A be an abelian category and suppose that we have

a diagram of the form:

A → B → C → 0

0 → A′ → B′ → C ′,

where the rows are exact. Then, there is a morphism δ : ker a → cokerc, cokera = A′/ℑa,
such that the following sequence is exact:

ker a → ker b → ker c → cokera → cokerb → cokerc.

Proof. We will discuss the case for A being the cat of R-modules. The case for abelian
categories can be done using the Embedding Theorem that allows us to apply the theo-
rems developed in the case of Mod-categories in the case of Abelian categories.

The proof of this lemma is done via ’diagram chasing’.
Let us take an element z ∈ C such that c(z) = 0. This means that z ∈ ker c. Since g is
onto, ∃y ∈ B so that z = g(y), therefore we have by applying this process to both parts
that g′b(y) = cg(y) = c(z) = 0, therefore b(y) ∈ ker g′ = ℑf ′, hence exists x′ ∈ A′ such
that f ′(x′) = b(y).
Put δ(x) = x′ + ℑa ∈ cokera. We prove that this map is

1. well-defined;
Pick y1 ∈ B such that g(y1) = z, then y − y1 ∈ ℑf = f(x) for some x. Let x

′

1 such
that f ′(x

′

1) = g(y1), then f ′(x′ − x
′

1) = b(y − y1) = bf(x) = f ′(a(x)). Therefore,
a(x) = x′ − x

′

1 since f ′ is injective and x′ + ℑa = x
′

1 + mℑa as elements in the
cokernel of a.

2. homomorphism.
Let z1, z2 ∈ ker c, and for each i, let (x,yi) be the pair in the def. of δxi, then
g(y1 − y2) = z1 − z2 and f ′(x1 − x2) = b(y1 − y2) so δ(z1 − z2) = x1 − x2. In the
same manner we do for δ(rx1) = rδ(x1).

Theorem 3.3. 2nd Snake Lemma Let 0 → A. → B. → C. → 0 be a short sequence of

chain complexes, then there exists natural maps δ : Hn(C) → Hn−1(A) called connecting

homomorphism such that:

... → Hn+1(C) → Hn(A) → Hn(B) → Hn(C) → Hn−1(A) → ...

is an exact sequence.
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Proof.

1. Form the following sequence as in the book.

2. Take each sequence and apply Snake Lemma.

3. Figure out the kernel and cokernel.
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4 Chain homotopy

We will compare this concept with the topological homotopy which is an equivalence
relation of maps. We define this new concept using chain complexes.

Definition 4.1. Chain homotopy Let f, g : C. → D. be chain maps. A chain homotopy
form f to gn is a collection of maps sn : Cn → Dn+1 such that for each n we have:

fn − gn = sn−1dn − dn+1sn.

If there is a chain homotopy from f to g we write f ∼= g.

Here is the diagram:

We can observe that as in the topological case, this relation ∼= is an equivalence
relation on chain maps.

Lemma 4.2. The relation ∼= is an equivalence relation on chain maps.

Proof. We check the three properties:

1. reflexivity: take sn = 0;

2. symmetry: if s is a chain homotopy from f to g, then −s is a chain homotopy from
g to f ;

3. transitivity: if h is a chain homotopy from f to g, h′ is a chain homotopy from g
to k, then h+ h′ is a chain homotopy from f to k.

Definition 4.3. Chain homotopy equivalence We say that f : C. → D. is a chain
homotopy equivalence if there is a mag g : D. → C. such that gf and fg are chain
homotopic to their respective identity maps on C. and D. .

Proposition 4.4. Let C. and D. be two chain complexes and f, g : C. → D. chain
homotopic. Then, the induced maps on the homology are equivalents:
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